POJ 2502 Subway (Dijkstra 最短路+建图)

91 篇文章 1 订阅


Subway
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 6689 Accepted: 2176

Description

You have just moved from a quiet Waterloo neighbourhood to a big, noisy city. Instead of getting to ride your bike to school every day, you now get to walk and take the subway. Because you don't want to be late for class, you want to know how long it will take you to get to school.
You walk at a speed of 10 km/h. The subway travels at 40 km/h. Assume that you are lucky, and whenever you arrive at a subway station, a train is there that you can board immediately. You may get on and off the subway any number of times, and you may switch between different subway lines if you wish. All subway lines go in both directions.

Input

Input consists of the x,y coordinates of your home and your school, followed by specifications of several subway lines. Each subway line consists of the non-negative integer x,y coordinates of each stop on the line, in order. You may assume the subway runs in a straight line between adjacent stops, and the coordinates represent an integral number of metres. Each line has at least two stops. The end of each subway line is followed by the dummy coordinate pair -1,-1. In total there are at most 200 subway stops in the city.

Output

Output is the number of minutes it will take you to get to school, rounded to the nearest minute, taking the fastest route.

Sample Input

0 0 10000 1000
0 200 5000 200 7000 200 -1 -1 
2000 600 5000 600 10000 600 -1 -1

Sample Output

21

Source

Waterloo local 2001.09.22

题目链接:http://poj.org/problem?id=2502

题目大意:第一行给出起点和终点坐标,然后每一行是一个地铁线,用坐标表示,以-1 -1表示该条线路输入完毕,注意单位是米!每条线路都是直线双向,地铁时速40km/h,人步行速度10km/h,地铁只能在相邻两站间行使,不能直接从第i站到第i+2站,若该人一到地铁站就有地铁坐,问其从起点到终点的最少需要几分钟

题目分析:此题的输入建图比较麻烦,每条地铁线我们要单独处理,笛卡尔距离 / 地铁速(40km/h)作为边权,处理完每条线,再处理其他点之间的边权,笛卡儿距离 / 人速(10km/h),然后就是裸的最短路问题,用Dijkstra求解,注意3个问题,第1:单位的换算,第2:结果要求四舍五入,第3:无穷大设置为double型!


#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
int const MAX = 405;
int const INF = 100000000.0;

struct Node
{
    double u, v;
}nd[MAX];

double dis[MAX], e[MAX][MAX];
bool vis[MAX];
int cnt;

double get_dis(double x1, double y1, double x2, double y2)
{
    return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}

void Dijkstra(int v0)
{
    for(int i = 0; i < cnt; i++)
        dis[i] = e[v0][i];
    dis[v0] = 0;
    vis[v0] = true;
    for(int i = 0; i < cnt - 1; i++)
    {
        double mi = INF;
        int u = v0;
        for(int j = 0; j < cnt; j++)
        {
            if(!vis[j] && mi > dis[j])
            {
                u = j;
                mi = dis[j];
            }
        }
        vis[u] = true;
        for(int k = 0; k < cnt; k++)
            if(!vis[k] && dis[k] > dis[u] + e[u][k])
                dis[k] = dis[u] + e[u][k];
    }
}

int main()
{
    memset(vis, false, sizeof(vis));
    memset(e, 0, sizeof(e));
    scanf("%lf %lf %lf %lf", &nd[0].u, &nd[0].v, &nd[1].u, &nd[1].v);
    double u, v;
    int tmp = 2;
    cnt = 2;
    while(scanf("%lf %lf", &u, &v) != EOF)
    {
        if(u == -1.0 && v == -1.0)
        {
            for(int i = tmp; i < cnt - 1; i++)
            {
                double get = get_dis(nd[i].u, nd[i].v, nd[i + 1].u, nd[i + 1].v) / 40000.0;
                e[i][i + 1] = e[i + 1][i] = get;
            }
            tmp = cnt;
            continue;
        }
        nd[cnt].u = u;
        nd[cnt++].v = v;
    }
    for(int i = 0; i < cnt; i++)
        for(int j = i + 1; j < cnt; j++)
            if(e[i][j] == 0)
                e[i][j] = e[j][i] = get_dis(nd[i].u, nd[i].v, nd[j].u, nd[j].v) / 10000.0;
    Dijkstra(0);
    printf("%d\n", (int)(dis[1] * 60.0 + 0.5));
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值