In a country popular for train travel, you have planned some train travelling one year in advance. The days of the year that you will travel is given as an array days
. Each day is an integer from 1
to 365
.
Train tickets are sold in 3 different ways:
- a 1-day pass is sold for
costs[0]
dollars; - a 7-day pass is sold for
costs[1]
dollars; - a 30-day pass is sold for
costs[2]
dollars.
The passes allow that many days of consecutive travel. For example, if we get a 7-day pass on day 2, then we can travel for 7 days: day 2, 3, 4, 5, 6, 7, and 8.
Return the minimum number of dollars you need to travel every day in the given list of days
.
Example 1:
Input: days = [1,4,6,7,8,20], costs = [2,7,15]
Output: 11
Explanation:
For example, here is one way to buy passes that lets you travel your travel plan:
On day 1, you bought a 1-day pass for costs[0] = $2, which covered day 1.
On day 3, you bought a 7-day pass for costs[1] = $7, which covered days 3, 4, ..., 9.
On day 20, you bought a 1-day pass for costs[0] = $2, which covered day 20.
In total you spent $11 and covered all the days of your travel.
Example 2:
Input: days = [1,2,3,4,5,6,7,8,9,10,30,31], costs = [2,7,15]
Output: 17
Explanation:
For example, here is one way to buy passes that lets you travel your travel plan:
On day 1, you bought a 30-day pass for costs[2] = $15 which covered days 1, 2, ..., 30.
On day 31, you bought a 1-day pass for costs[0] = $2 which covered day 31.
In total you spent $17 and covered all the days of your travel.
Note:
1 <= days.length <= 365
1 <= days[i] <= 365
days
is in strictly increasing order.costs.length == 3
1 <= costs[i] <= 1000
题目连接:https://leetcode.com/problems/minimum-cost-for-tickets/
题目分析:第一反应是区间dp,看了数据范围1e7应该能搞,dp[i][j]表示第i天到第j天的最小值,空间O(n^2),时间O(n^3)
121ms,击败5%
class Solution {
public int mincostTickets(int[] days, int[] costs) {
int n = days.length;
int[][] dp = new int[400][400];
int s = days[0];
int e = days[n - 1];
for (int i = 0; i < 400; i++) {
Arrays.fill(dp[i], 0x3fffffff);
}
for (int i = 0; i < n; i++) {
dp[days[i]][days[i]] = costs[0];
}
for (int len = 1; len < n; len++) {
for (int i = 0; i + len < n; i++) {
int j = i + len;
if (days[j] - days[i] < 7) {
dp[days[i]][days[j]] = Math.min(dp[days[i]][days[j]], costs[1]);
}
if (days[j] - days[i] < 30) {
dp[days[i]][days[j]] = Math.min(dp[days[i]][days[j]], costs[2]);
}
for (int k = i; k < j; k++) {
dp[days[i]][days[j]] = Math.min(dp[days[i]][days[j]], dp[days[i]][days[k]] + dp[days[k + 1]][days[j]]);
}
}
}
return dp[s][e];
}
}
然后发现从左往右扫就行了,空间O(n),时间O(n^2),dp[i]表示第1天到第i天的最小值
5ms,击败54%
class Solution {
public int mincostTickets(int[] days, int[] costs) {
int[] dp = new int[400];
dp[1] = costs[0];
for (int i = 2; i <= days.length; i++) {
dp[i] = dp[i - 1] + costs[0];
for (int j = 1; j < i; j++) {
if (days[i - 1] - days[j - 1] < 7) {
dp[i] = Math.min(dp[i], dp[j - 1] + costs[1]);
}
if (days[i - 1] - days[j - 1] < 30) {
dp[i] = Math.min(dp[i], dp[j - 1] + costs[2]);
}
}
}
return dp[days.length];
}
}
突然想到,往前的状态只有间隔为7和30的,总天数又是定值,不妨直接枚举,到某个位置时判断即可,空间O(1),时间O(n)
3ms,击败100%
class Solution {
public int mincostTickets(int[] days, int[] costs) {
int n = days.length;
int[] dp = new int[366];
for (int i = 0; i < n; i++) {
dp[days[i]] = costs[0];
}
for (int i = days[0]; i <= days[n - 1]; i++) {
dp[i] += dp[i - 1];
dp[i] = Math.min(dp[i], (i < 7 ? 0 : dp[i - 7]) + costs[1]);
dp[i] = Math.min(dp[i], (i < 30 ? 0 :dp[i - 30]) + costs[2]);
}
return dp[days[n - 1]];
}
}
算法的魅力就在于此吧