- 博客(8)
- 收藏
- 关注
原创 MATLAB代码:考虑P2G与碳捕集机组的多能微网低碳经济调度
在这样的背景下,本文将介绍一个含有碳捕集机组、电转气装置的多能源微网低碳调度模型,以及如何利用阶梯式碳交易对CO2的排放交易进行进一步的优化。主要内容:代码主要做的是一个含有碳捕集机组、电转气装置的多能源微网低碳调度模型,将捕集到的高浓度二氧化碳( CO2 ) 作为原料供电转气设备利用,并提出使用储气装置解决 CO2 的捕集和利用存在时间上不匹配的问题,此外,利用big-M法,对模型求解过程中的非线性项进行了松弛,得到了可以快速求解的模型。关键词:碳交易 阶梯碳交易 碳捕集 多能微网 低碳调度。
2023-11-21 08:34:57 141
原创 博途S7-1200主站与S7-200从站实现RS485通讯程序
而在RS485通信网络中,S7-1200主站与S7-200从站的通信是一个常见的应用场景。如果主站发送的数据包符合从站程序的格式,从站就会将结果返回到主站。在PLC Browser中,右击通信设置和接口,选择S7-200和RS485,设置从站的地址。S7-200从站:面板上的PPI/MPI插口RXD接485的A线、TXD接485的B线,D+接485的B线、D-接485的A线。S7-1200主站:DB9连接器RXD接485的A线、TXD接485的B线,D+接485的B线、D-接485的A线。
2023-11-21 08:34:24 3051
原创 matlab simulink 永磁直驱海上风电场仿真模型含集群电流源等效海上风电场线路结构
为了确保直驱式永磁同步发电机在海上风电场中的安全性和性能,在进行设计之前,必须进行大量的仿真和模拟。本文介绍了一种基于 Matlab Simulink 平台的风电场仿真模型,该模型可以考虑集群电流源等效、SVG 恒电压无功补偿、高抗补偿、标幺值控制等因素。经过多次模拟和仿真的测试,我们得出了一个完整、可靠、高效的海上风电场仿真模型,它可以满足各种负载变化和电网要求。在电网侧控制部分,我们采用了 SVG 恒电压无功补偿技术和高抗补偿技术,使得电网能够正常运行并且免受电压波动的干扰。
2023-11-21 08:33:40 483
原创 maxwell静电场电位分布
在本文中,我们将通过分析Maxwell静电场的特性以及电势能的计算方法,来深入探讨Maxwell静电场电位分布的相关知识。首先,我们将介绍Maxwell静电场的基本概念和电位分布的定义,然后探讨电势能的计算方法以及其在电场分析中的应用。最后,我们将通过具体的实例来进一步阐述Maxwell静电场电位分布的计算方法,并探讨其在实际工程应用中的意义和作用。在电场中,电势差可以通过两点之间的电位差来计算。Maxwell静电场电位分布是电学领域中一个非常重要的概念,它与电场分布和电势能的计算有着密切的关系。
2023-11-21 08:33:02 512
原创 基于深度置信网络-支持向量机(DBN-SVM)的数据分类预测
在实现DBN-SVM算法的过程中,可以使用Matlab提供的工具箱,如Deep Learning Toolbox和Statistics and Machine Learning Toolbox,来实现深度学习和支持向量机算法的训练和预测。总之,基于深度置信网络-支持向量机(DBN-SVM)的数据分类预测是一种非常有用的技术,可以应用于各种领域,如金融、医疗和工业等。在这个过程中,深度置信网络-支持向量机(DBN-SVM)是一个非常有用的工具,它可以通过对大量数据的学习,来进行高精度的分类预测。
2023-11-21 08:32:28 277
原创 三维危险势能场建模,用于智能车换道路径规划与行为决策(人工势场法的改良版)
与传统的人工势场法相比,三维危险势能场建模方法具有以下优点:首先,它可以更精细地描述车辆与危险物体之间的关系,从而更准确地预测车辆行驶路线。三维危险势能场建模,是指利用三维空间的势能场模型来描述车辆在道路环境中的移动过程,其中危险势能场模型是指在车辆移动过程中,遇到危险物体或者障碍物时,所产生的势能场。在这种方法中,对于危险物体或者障碍物,可以按照其大小和形状,设置不同的危险程度,从而在势能场中产生不同的势能值。当车辆进入势能场时,其运动轨迹会受到势能值的影响,从而产生对应的加速度和转向角度。
2023-11-21 08:31:56 487
原创 基于机器学习的锂离子电池容量估计使用多通道充电配置程序,利用神经网络学习容量与充电性能之间的关系
本文介绍了一种基于机器学习的锂离子电池容量估计方法,其基于多通道充电配置程序,使用前馈神经网络、卷积神经网络和长短时记忆网络来准确地估计电池容量。同时,我们还提出了一种电池寿命预测的方法,该方法基于逆变器和电池之间的电流波形,通过分析电流波形中的特征参数来预测电池寿命。该方法使用多通道充电配置程序来获取电池的充电性能数据,利用前馈神经网络,卷积神经网络和长短时记忆来准确地估计电池容量。该方法基于逆变器和电池之间的电流波形,通过分析电流波形中的特征参数,来预测电池的寿命。电池寿命预测,有相关资料数据。
2023-11-21 08:31:25 188
原创 基于卷积-长短期记忆网络(CNN-LSTM)的数据分类预测
CNN网络结构能够处理图像数据,其主要思想是通过滤波器(卷积核)不断地对输入的样本进行卷积操作,并提取出其中的特征,从而实现对图像的分类识别。卷积-长短期记忆网络(CNN-LSTM)算法是近年来发展起来的一种基于深度学习的神经网络算法,能够有效地处理时间序列数据,因此在数据分类预测领域有着广泛的应用。首先,我们将简要介绍卷积神经网络(CNN)和长短期记忆网络(LSTM),然后将这两种网络结构进行融合,形成CNN-LSTM网络结构,进而探讨CNN-LSTM在数据分类预测中的应用。
2023-11-21 08:29:49 536
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人