#include<cstdio>
#include<cstring>
long long C(long long n, long long m) {
double ans = 1;
for(int i = 0; i < m; i++)
ans *= n-i;
for(int i = 0; i < m; i++)
ans /= i+1;
return (long long)(ans + 0.5);
}
const int maxn = 30 + 5;
long long f[maxn], d[maxn][maxn]; //d(i,j)表示每棵树最多包含i个叶子,一共有j个叶子的方案数
int main() {
f[1] = 1;
memset(d, 0, sizeof(d));
int n = 30;
for(int i = 0; i <= n; i++) d[i][0] = 1;
for(int i = 1; i <= n; i++) { d[i][1] = 1; d[0][i] = 0; }
for(int i = 1; i <= n; i++) {
for(int j = 2; j <= n; j++) {
d[i][j] = 0;
for(int p = 0; p*i <= j; p++)
d[i][j] += C(f[i]+p-1, p) * d[i-1][j-p*i];
}
f[i+1] = d[i][i+1];
}
while(scanf("%d", &n) == 1 && n)
printf("%lld\n", n == 1 ? 1 : 2*f[n]);
return 0;
}
代码是白书上的;
设dp[i][j]为一共j个叶子结点的树,子树的叶子最多的为i个的情况。然后对于一颗树,枚举恰好包含i个叶子的子树为p棵,那么相当于从f[i]颗树中选出p棵树的方案数,是可重复选择的组合,组合数为:C(f[i] + p - 1, p)种,然后每种子树对应的情况数为dp[i - 1][j - p * i]
所以状态转移方程为dp[i][j] = sum{C(f[i] + p - 1, p) * d(i - 1, j - p * i)},最后答案为dp[n - 1][n]