最长单调递增子序列 应该算是比较经典的问题 记录一下我写这道题的过程吧
首先转换成lcs的做法 我就不说了 我觉得很内个啥 你懂吧 就复杂度依然是n方 很麻烦的方法
方法一 动态规划 O(n*n)
思路是这样的 定义dp[i] 为在I点结束的最长单调递增子序列的长度 所以可以便利一遍数组 每次都把之前的东西都找一遍 尝试增大 就这样
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
const int N = 10005;
int main()
{
int dp[N], t, maxx;
char str[N];
cin >> t ;
while ( t -- ) {
maxx = 0;
cin >> str ;
int len = strlen(str);
memset(dp , 0, sizeof(dp));
for (int i = 0; i < len; i ++) {
for (int j = 0; j < i ; j ++) {
if(str[j] < str[i])
dp[i] = max(dp[i] , dp[j] + 1);
maxx = max(maxx , dp[i]);
}
}
cout << maxx + 1 << endl;
}
return 0;
百度了下O(n*lgn)的算法思想 然后自己写了一发
参考了这个人的博客 非常详细 不会都难!!!
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
const int N = 10005;
char tar[N];
char str[N];
int Binary_search(int l,int r,char c)
{
int mid;
while (l < r) {
mid = (l + r) >> 1;
if(tar[mid] < c) {
l = mid + 1;
} else if (tar[mid] > c) {
r = mid;
} else return mid;
}
//cout << "mid == " << mid << endl;
return l;
}
int main()
{
int t ;
cin >> t ;
while ( t -- ) {
cin >> str ;
int length = strlen(str);
int len = 0;
tar[len ++] = str[0];
for (int i = 1; i < length; i ++) {
if(str[i] > tar[len - 1]) {
tar[len ++] = str[i];
}
else {
int pos = Binary_search(0 , len, str[i]);
tar[pos] = str[i];
}
}
cout << len << endl;
}
}