NYOJ 17 (最长单调递增子序列) O (n*n) + O(n*lgn)

最长单调递增子序列  应该算是比较经典的问题  记录一下我写这道题的过程吧 

首先转换成lcs的做法 我就不说了 我觉得很内个啥 你懂吧 就复杂度依然是n方  很麻烦的方法 


方法一 动态规划  O(n*n)

思路是这样的  定义dp[i] 为在I点结束的最长单调递增子序列的长度   所以可以便利一遍数组 每次都把之前的东西都找一遍 尝试增大  就这样


#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
const int N = 10005;
int main()
{
    int dp[N], t, maxx;
    char str[N];
    cin >> t ;
    while ( t -- ) {
            maxx = 0;
        cin >> str ;
        int len = strlen(str);
        memset(dp , 0, sizeof(dp));
        for (int i = 0; i < len; i ++) {
            for (int j = 0; j < i ; j ++) {
                if(str[j] < str[i])
                dp[i] = max(dp[i] , dp[j] + 1);
                maxx = max(maxx , dp[i]);
            }
        }
        cout << maxx + 1 << endl;
    }
    return 0;


百度了下O(n*lgn)的算法思想   然后自己写了一发

参考了这个人的博客 非常详细 不会都难!!!

这个人的~~



#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
const int N = 10005;
char tar[N];
char str[N];
int Binary_search(int l,int r,char c)
{
    int mid;
    while (l < r) {
        mid = (l + r) >> 1;
        if(tar[mid] < c) {
            l = mid + 1;
        } else if (tar[mid] > c) {
            r = mid;
        } else return mid;
    }
    //cout << "mid == " << mid << endl;
    return l;
}
int main()
{
    int t ;

    cin >> t ;
    while ( t -- ) {
        cin >> str ;
        int length = strlen(str);
        int len = 0;
        tar[len ++] = str[0];
        for (int i = 1; i < length; i ++) {

            if(str[i] > tar[len - 1]) {
                tar[len ++] = str[i];
            }

            else {
                int pos = Binary_search(0 , len, str[i]);
                tar[pos] = str[i];
            }
        }
        cout << len << endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值