HDU 4771

题目意思 :

大概是这个意思   给你一个N*M的地图   地图中存在一些信息  ‘#’表示不能通过的路段 ‘.’表示可以通过的路  ‘@’表示起始点  

然后给你n个点  和这些点的坐标  问题大概是求一个 遍历了所有点的最短路  如果没有这样一条路  输出-1;


首先用 dfs  或者 全排列 的思路大概是  首先把这些特殊点和初始点 全都放在一起 然后找到任意两点之间的距离 没错 就是这样

刚开始我想到找到任意距离之后  用最小生成树 解决问题 后来发现  这个是没有办法用最小生成树的  因为他不具备这种性质


当然也可以用状态压缩   这种方法可以解决当特殊点比较多的情况  而这种情况是深搜不容易解决的


先贴一个深搜做的  全排列的做法跟这个几乎一样 不写了

#include <iostream>
#include <algorithm>
#include <queue>
#include <cstring>
#include <cmath>
using namespace std;
const int N = 105;
int n, m;
int ans;
struct Node
{
    int x, y;
    int steps;
};
int tar_nums , stx , sty;
Node tar_pos[5];
char Map[N][N];
int s[4];
int idx[N][N];
int bfs(int start, int End)
{
    Node a = tar_pos[start];
    a.steps = 0;
    queue<Node>q;
    q.push(a);
    memset(idx , 0, sizeof(idx));
    idx[a.x][a.y] = 1;
    while (!q.empty()) {
        Node temp;
        temp = a = q.front();q.pop();
        if(a.x == tar_pos[End].x && a.y == tar_pos[End].y) {
            return a.steps;
        }
        int dir[4][2] = {{1,0},{0,1},{-1,0},{0,-1}};
        for (int i = 0; i < 4; i ++) {
            int xx = a.x + dir[i][0];
            int yy = a.y + dir[i][1];
            if(xx > 0 && xx <= n && yy > 0 && yy <= m && !idx[xx][yy] && Map[xx][yy] != '#') {
                idx[xx][yy] = 1;
                a.steps ++;
                a.x = xx,a.y = yy;
                q.push(a);
            }
            a = temp;
        }
    }
    return -1;
}
int dis[6][6];
void dfs(int x , int from , int sum)
{
    if(x == tar_nums) {
        ans = min(ans , sum);
    }
    for (int i = 1; i <= tar_nums; i ++) {
        if(!s[i]) {
            s[i] = 1;
            dfs(x + 1, i , sum + dis[from][i]);
            s[i] = 0;
        }
    }
}
int main()
{
    while (cin >> n >> m && (n + m)) {
        for (int i = 1; i <= n; i ++)
            for (int j = 1; j <= m; j ++) {
                cin >> Map[i][j];
                if(Map[i][j] == '@') {
                    stx = i, sty = j;
                }
            }
        cin >> tar_nums;
        tar_pos[0].x = stx , tar_pos[0].y = sty;
        for (int i = 1; i <= tar_nums ; i ++) {
            cin >> tar_pos[i].x >> tar_pos[i].y;
        }
        bool flag = true;
        for (int i = 0; i <= tar_nums; i ++) {
            for (int j = i ; j <= tar_nums; j ++) {
                if(i == j) dis[i][j] = 0;
                else {
                    int temp = bfs(i , j);
                    if(temp == -1) {flag = false ; cout << i << " " << j << endl; break;}
                    dis[i][j] = dis[j][i] = temp;
                }
            }if(!flag)break;
        }
        if(!flag) {
            cout << -1 << endl;continue;
        }

        memset(s , 0, sizeof(s));
        ans = 0x7fffffff;
        dfs(0 , 0 , 0);
        cout << ans << endl;
    }
}


再贴一份 用状态压缩写的

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn = 105;
struct Node
{
    int x, y, state;
};
Node Points[5];
int n , m, stx, sty, num_points;
char Map[maxn][maxn];
int idx[1 << 4][maxn][maxn];
int dir[4][2] = {{1,0},{0,1},{-1,0},{0,-1}};
int Bfs()
{
    Node start;
    start.x = stx, start.y = sty, start.state = 0;
    for (int i = 0; i < num_points; i ++) {
        if(start.x == Points[i].x && start.y == Points[i].y) {
            start.state = 0 | (1 << i);break;
        }
    }
    memset(idx , 0, sizeof(idx));
    idx[start.state][start.x][start.y] = 1;
    queue<Node>q;
    q.push(start);
    while (!q.empty()) {
        Node temp = start = q.front(); q.pop();
        if(temp.state == (1 << num_points) - 1) {
            return idx[temp.state][temp.x][temp.y] - 1;
        }
       // printf("state == %d\n", (1 << num_points) - 1);
        for (int i = 0; i < 4; i ++) {
            start.x = temp.x + dir[i][0];
            start.y = temp.y + dir[i][1];
            for (int i = 0; i < num_points; i ++) {
                if(start.x == Points[i].x && start.y == Points[i].y) {
                    start.state = start.state | (1 << i);break;
                }
            }
            if(start.x >= 1 && start.y >= 1 && start.x <= n && start.y <= m
            && !idx[start.state][start.x][start.y] && Map[start.x][start.y] != '#') {
                idx[start.state][start.x][start.y] = idx[temp.state][temp.x][temp.y] + 1;
                q.push(start);
            }
            start = temp;
        }
    }
    return -1;
}
int main()
{
    while (~scanf("%d%d",&n,&m) && (n + m)) {
        getchar();
        for (int i = 1; i <= n; i ++) {
            for (int j = 1; j <= m; j ++) {
                scanf("%c",&Map[i][j]);
                if(Map[i][j] == '@')
                    stx = i, sty = j;
            }getchar();
        }
        scanf("%d",&num_points);
        for (int i = 0; i < num_points; i ++) {
            scanf("%d%d",&Points[i].x, &Points[i].y);
        }
        printf("%d\n",Bfs());
    }
    return 0;
}
/*
4 4
#@##
....
....
....
3
2 1
2 4
3 1
*/



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值