Codeforces Round #440 (Div. 2)C. Maximum splitting

C. Maximum splitting
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given several queries. In the i-th query you are given a single positive integer ni. You are to represent ni as a sum of maximum possible number of composite summands and print this maximum number, or print -1, if there are no such splittings.

An integer greater than 1 is composite, if it is not prime, i.e. if it has positive divisors not equal to 1 and the integer itself.

Input

The first line contains single integer q (1 ≤ q ≤ 105) — the number of queries.

q lines follow. The (i + 1)-th line contains single integer ni (1 ≤ ni ≤ 109) — the i-th query.

Output

For each query print the maximum possible number of summands in a valid splitting to composite summands, or -1, if there are no such splittings.

Examples
Input
1
12
Output
3
Input
2
6
8
Output
1
2
Input
3
1
2
3
Output
-1
-1
-1
Note

12 = 4 + 4 + 4 = 4 + 8 = 6 + 6 = 12, but the first splitting has the maximum possible number of summands.

8 = 4 + 4, 6 can't be split into several composite summands.

1, 2, 3 are less than any composite number, so they do not have valid splittings.



题目意思 就不多说了吧 

做这道题的时候有人给我讲题意 然后我给理解错了 这道题是让你求分数字最多的分发  然后我还以为是让你求分法的种数

我还以为是整数划分问题


因为要分解的数字最多  所以就变成了用最小的非素数来分解的问题  也就是说 看这个数字中有多少个4 

如果这个数字取余4得1或者3那么需要在答案中减一  因为你需要两个4合并起来在加上这个余数来得到一个非素数 

#include <cstdio>
#include <cstring>
#include <algorithm>
const int inf = 0x7fffffff;
const int N = 100005;
using namespace std;
int array[N];
int main()
{
	int _ , n;
	scanf("%d",&_);
	while (_ --) {
        scanf("%d",&n);
        if(n >= 4) {
            if(n == 5 || n == 7 || n == 11) {
                printf("-1\n");continue;
            }
            if(n % 4 == 0 || n % 4 == 2) {
                printf("%d\n",n/4);
            } else if(n % 4 == 1 || n % 4 == 3) {
                printf("%d\n",n/4 - 1);
            }
        }
        else {
            printf("-1\n");
        }
	}
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值