函数与极限

数列的极限

数列极限的定义可表达为:
lim ⁡ n → ∞ x n = a ⇔ ∀ ε > 0 , ∃   正整数 N , 当 n > N 时 , 有 ∣ x n − a ∣ < ε \lim_{n \to \infty}x_n=a \Leftrightarrow \forall \varepsilon >0, \exists \, 正整数N,当n>N时,有|x_n-a|<\varepsilon nlimxn=aε>0,正整数N,n>N,xna<ε

  • 常数 a a a就称为数列 { x n } \{x_n\} {xn}的极限,或者称数列 { x n } \{x_n\} {xn}收敛 a a a
  • 如果不存在这样的常数 a a a,就说数列 { x n } \{x_n\} {xn}没有极限,或者说数列 { x n } \{x_n\} {xn}发散的.

收敛数列有以下性质:

  1. 极限的唯一性:如果数列 { x n } \{x_n\} {xn}收敛,那么它的极限唯一。
  2. 收敛数列的有界性:如果数列 { x n } \{x_n\} {xn}收敛,那么数列 { x n } \{x_n\} {xn}一定有界,即存在正数 M M M,使得对于一切 x n x_n xn都满足 ∣ x n ∣ ≤ M |x_n| \leq M xnM
  3. 收敛数列的保号性:如果 lim ⁡ n → ∞ x n = a \lim \limits_{n \to \infty}x_n=a nlimxn=a,且 a > 0 a>0 a>0(或 a < 0 a<0 a<0),那么存在正整数 N N N,当 n > N n>N n>N时,都有 x n > 0 x_n>0 xn>0(或 x n < 0 x_n<0 xn<0)。
    • 推论:如果数列 { x n } \{x_n\} {xn}从某项起有 x n ≥ 0 x_n \geq 0 xn0(或 x n ≤ 0 x_n \leq 0 xn0),且 lim ⁡ n → ∞ x n = a \lim \limits_{n \to \infty}x_n=a nlimxn=a,那么 a ≥ 0 a \geq 0 a0(或 a ≤ 0 ) a \leq 0) a0)
  4. 收敛数列与其子数列间的关系:如果数列 { x n } \{x_n\} {xn}收敛于 a a a,那么它的任一子数列也收敛,且极限也是 a a a

函数的极限

自变量趋于有限值

自变量趋于有限值时,函数极限的定义可表达为:
lim ⁡ x → x 0 f ( x ) = A ⇔ ∀ ε > 0 , ∃   δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ 时 , 有 ∣ f ( x ) − A ∣ < ε \lim_{x \to x_0}f(x)=A \Leftrightarrow \forall \varepsilon >0, \exist \, \delta>0, 当0<|x-x_0|<\delta时,有|f(x)-A|<\varepsilon xx0limf(x)=Aε>0,δ>0,0<xx0<δ,f(x)A<ε

函数 f ( x ) f(x) f(x) x → x 0 x \to x_0 xx0时极限存在的充要条件是左极限及右极限各自存在并且相等,即
lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) \lim_{x \to x_0^-}f(x)=\lim_{x \to x_0^+}f(x) xx0limf(x)=xx0+limf(x)

f ( x 0 − ) = f ( x 0 + ) f(x_0^-)=f(x_0^+) f(x0)=f(x0+)

自变量趋于无穷大

自变量趋于无穷大时,函数极限的定义可表达为:
lim ⁡ x → ∞ f ( x ) = A ⇔ ∀ ε > 0 , ∃   X > 0 , 当 ∣ x ∣ > X 时 , 有 ∣ f ( x ) − A ∣ < ε \lim_{x \to \infty}f(x)=A \Leftrightarrow \forall \varepsilon >0, \exist \, X>0, 当|x|>X时,有|f(x)-A|<\varepsilon xlimf(x)=Aε>0,X>0,x>X,f(x)A<ε

函数极限的性质

  1. 函数极限的唯一性:如果 lim ⁡ x → x 0 f ( x ) \lim \limits_{x \to x_0}f(x) xx0limf(x)存在,那么这极限唯一。
  2. 函数极限的局部有界性:如果 lim ⁡ x → x 0 f ( x ) = A \lim \limits_{x \to x_0}f(x)=A xx0limf(x)=A,那么存在常数 M > 0 M>0 M>0 δ > 0 \delta >0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时,有 ∣ f ( x ) ∣ ≤ M |f(x)| \leq M f(x)M
  3. 函数极限的局部保号性:如果 lim ⁡ x → ∞ f ( x ) = A \lim \limits_{x \to \infty}f(x)=A xlimf(x)=A,且 A > 0 A>0 A>0(或 A < 0 A<0 A<0),那么存在常数 δ > 0 \delta >0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时,有 f ( x ) > 0 f(x) >0 f(x)>0(或 f ( x ) < 0 f(x) <0 f(x)<0)。
    • 如果 lim ⁡ x → ∞ f ( x ) = A \lim \limits_{x \to \infty}f(x)=A xlimf(x)=A A ≠ 0 A \neq 0 A=0),那么就存在着 x 0 x_0 x0的某一去心邻域 U ˚ ( x 0 ) \mathring{U} (x_0) U˚(x0),当 x ∈ U ˚ ( x 0 ) x \in \mathring{U}(x_0) xU˚(x0)时,就有 ∣ f ( x ) ∣ > ∣ A ∣ 2 |f(x)| >\frac{|A|}{2} f(x)>2A
    • 如果在 x 0 x_0 x0的某去心邻域内 f ( x ) ≥ 0 f(x) \geq 0 f(x)0(或 f ( x ) ≤ 0 f(x) \leq 0 f(x)0),而且 lim ⁡ x → x 0 f ( x ) = A \lim \limits_{x \to x_0}f(x)=A xx0limf(x)=A,那么 A ≥ 0 A \geq 0 A0(或 A ≤ 0 A \leq 0 A0
  4. 函数极限于数列极限的关系:如果极限 lim ⁡ x → ∞ f ( x ) \lim \limits_{x \to \infty}f(x) xlimf(x)存在, { x n } \{x_n\} {xn}为函数 f ( x ) f(x) f(x)的定义域内任一收敛于 x 0 x_0 x0的数列,且满足 x n ≠ x 0 ( n ∈ N + ) x_n \neq x_0 (n \in \bm{N}_+) xn=x0(nN+),那么相应的函数值数列 { f ( x n ) } \{f(x_n)\} {f(xn)}必收敛,且 lim ⁡ n → ∞ f ( x ) = lim ⁡ x → x 0 f ( x ) \lim \limits_{n \to \infty}f(x)=\lim \limits_{x \to x_0}f(x) nlimf(x)=xx0limf(x)

无穷小与无穷大

无穷小

如果函数 f ( x ) f(x) f(x) x → x 0 x \to x_0 xx0(或 x → ∞ x \to \infty x)时的极限为零,那么称函数 f ( x ) f(x) f(x)为当 x → x 0 x \to x_0 xx0(或 x → ∞ x \to \infty x)时的无穷小

在自变量的同一变化过程 x → x 0 x \to x_0 xx0(或 x → ∞ x \to \infty x)中,函数 f ( x ) f(x) f(x)具有极限 A A A的充要条件是 f ( x ) = A + α f(x)=A+\alpha f(x)=A+α,其中 α \alpha α是无穷小。

无穷大

设函数 f ( x ) f(x) f(x) x 0 x_0 x0的某一去心邻域内有定义(或 ∣ x ∣ |x| x大于某一正数时有定义—)。如果对于任意给定的正数 M M M(不论它多么大),总存在正数 δ \delta δ(或正数 X X X),只要 x x x适合不等式 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ(或 ∣ x ∣ > X |x|>X x>X),对应的函数值 f ( x ) f(x) f(x)总满足不等式 ∣ f ( x ) ∣ > M |f(x)|>M f(x)>M那么称函数 f ( x ) f(x) f(x)是当 x → x 0 x \to x_0 xx0(或 x → ∞ x \to \infty x)时的无穷大

在自变量的同一变化过程中,如果 f ( x ) f(x) f(x)为无穷大,那么 1 f ( x ) \frac{1}{f(x)} f(x)1为无穷小;反之,如果 f ( x ) f(x) f(x)为无穷小,且 f ( x ) ≠ 0 f(x) \neq 0 f(x)=0,那么 1 f ( x ) \frac{1}{f(x)} f(x)1为无穷大。

当函数的极限不存在时,也可以说函数的极限无穷大 lim ⁡ f ( x ) = ∞ \lim f(x)=\infty limf(x)=

函数极限的定义总表

f ( x ) → A f(x) \to A f(x)A f ( x ) → ∞ f(x) \to \infty f(x) f ( x ) → + ∞ f(x) \to +\infty f(x)+ f ( x ) → + − ∞ f(x) \to +-\infty f(x)+
x → x 0 x \to x_0 xx0 ∀ ε > 0 , ∃ δ > 0 , 使当 0 < ∣ x − x 0 ∣ < δ 时 , 即有 ∣ f ( x ) − A ∣ < ε \forall \varepsilon>0, \exists \delta>0, \\使当0<|x-x_0|<\delta时, \\即有|f(x)-A|<\varepsilon ε>0,δ>0,使当0<xx0<δ,即有f(x)A<ε ∀ M > 0 , ∃ δ > 0 , 使当 0 < ∣ x − x 0 ∣ < δ 时 , 即有 ∣ f ( x ) ∣ > M \forall M>0, \exists \delta>0, \\使当0<|x-x_0|<\delta时,\\即有|f(x)|>M M>0,δ>0,使当0<xx0<δ,即有f(x)>M ∀ M > 0 , ∃ δ > 0 , 使当 0 < ∣ x − x 0 ∣ < δ 时 , 即有 f ( x ) > M \forall M>0, \exists \delta>0, \\使当0<|x-x_0|<\delta时,\\即有f(x)>M M>0,δ>0,使当0<xx0<δ,即有f(x)>M ∀ M > 0 , ∃ δ > 0 , 使当 0 < ∣ x − x 0 ∣ < δ 时 , 即有 f ( x ) < − M \forall M>0, \exists \delta>0,\\使当0<|x-x_0|<\delta时,\\即有f(x)<-M M>0,δ>0,使当0<xx0<δ,即有f(x)<M
x → x 0 + x \to x_0^+ xx0+ ∀ ε > 0 , ∃ δ > 0 , 使当 0 < x − x 0 < δ 时 , 即有 ∣ f ( x ) − A ∣ < ε \forall \varepsilon>0, \exists \delta>0, \\使当0<x-x_0<\delta时, \\即有|f(x)-A|<\varepsilon ε>0,δ>0,使当0<xx0<δ,即有f(x)A<ε ∀ M > 0 , ∃ δ > 0 , 使当 0 < x − x 0 < δ 时 , 即有 ∣ f ( x ) ∣ > M \forall M>0, \exists \delta>0, \\使当0<x-x_0<\delta时,\\即有|f(x)|>M M>0,δ>0,使当0<xx0<δ,即有f(x)>M ∀ M > 0 , ∃ δ > 0 , 使当 0 < x − x 0 < δ 时 , 即有 f ( x ) > M \forall M>0, \exists \delta>0, \\使当0<x-x_0<\delta时,\\即有f(x)>M M>0,δ>0,使当0<xx0<δ,即有f(x)>M ∀ M > 0 , ∃ δ > 0 , 使当 0 < x − x 0 < δ 时 , 即有 f ( x ) < − M \forall M>0, \exists \delta>0,\\使当0<x-x_0<\delta时,\\即有f(x)<-M M>0,δ>0,使当0<xx0<δ,即有f(x)<M
x → x 0 − x \to x_0^- xx0 ∀ ε > 0 , ∃ δ > 0 , 使当 0 > x − x 0 > − δ 时 , 即有 ∣ f ( x ) − A ∣ < ε \forall \varepsilon>0, \exists \delta>0, \\使当0>x-x_0>-\delta时, \\即有|f(x)-A|<\varepsilon ε>0,δ>0,使当0>xx0>δ,即有f(x)A<ε ∀ M > 0 , ∃ δ > 0 , 使当 0 > x − x 0 > − δ 时 , 即有 ∣ f ( x ) ∣ > M \forall M>0, \exists \delta>0, \\使当0>x-x_0>-\delta时,\\即有|f(x)|>M M>0,δ>0,使当0>xx0>δ,即有f(x)>M ∀ M > 0 , ∃ δ > 0 , 使当 0 > x − x 0 > − δ 时 , 即有 f ( x ) > M \forall M>0, \exists \delta>0, \\使当0>x-x_0>-\delta时,\\即有f(x)>M M>0,δ>0,使当0>xx0>δ,即有f(x)>M ∀ M > 0 , ∃ δ > 0 , 使当 0 > x − x 0 > − δ 时 , 即有 f ( x ) < − M \forall M>0, \exists \delta>0,\\使当0>x-x_0>-\delta时,\\即有f(x)<-M M>0,δ>0,使当0>xx0>δ,即有f(x)<M
x → ∞ x \to \infty x ∀ ε > 0 , ∃ X > 0 , 使当 ∣ x ∣ > X 时 , 即有 ∣ f ( x ) − A ∣ < ε \forall \varepsilon>0, \exists X>0, \\使当|x|>X时, \\即有|f(x)-A|<\varepsilon ε>0,X>0,使当x>X,即有f(x)A<ε ∀ M > 0 , ∃ X > 0 , 使当 ∣ x ∣ > X 时 , 即有 ∣ f ( x ) ∣ > M \forall M>0, \exists X>0, \\使当|x|>X时, \\即有|f(x)|>M M>0,X>0,使当x>X,即有f(x)>M ∀ M > 0 , ∃ X > 0 , 使当 ∣ x ∣ > X 时 , 即有 f ( x ) > M \forall M>0, \exists X>0, \\使当|x|>X时, \\即有f(x)>M M>0,X>0,使当x>X,即有f(x)>M ∀ M > 0 , ∃ X > 0 , 使当 ∣ x ∣ > X 时 , 即有 f ( x ) < − M \forall M>0, \exists X>0, \\使当|x|>X时, \\即有f(x)<-M M>0,X>0,使当x>X,即有f(x)<M
x → + ∞ x \to +\infty x+ ∀ ε > 0 , ∃ X > 0 , 使当 x > X 时 , 即有 ∣ f ( x ) − A ∣ < ε \forall \varepsilon>0, \exists X>0, \\使当x>X时, \\即有|f(x)-A|<\varepsilon ε>0,X>0,使当x>X,即有f(x)A<ε ∀ M > 0 , ∃ X > 0 , 使当 x > X 时 , 即有 ∣ f ( x ) ∣ > M \forall M>0, \exists X>0, \\使当x>X时, \\即有|f(x)|>M M>0,X>0,使当x>X,即有f(x)>M ∀ M > 0 , ∃ X > 0 , 使当 x > X 时 , 即有 f ( x ) > M \forall M>0, \exists X>0, \\使当x>X时, \\即有f(x)>M M>0,X>0,使当x>X,即有f(x)>M ∀ M > 0 , ∃ X > 0 , 使当 x > X 时 , 即有 f ( x ) < − M \forall M>0, \exists X>0, \\使当x>X时, \\即有f(x)<-M M>0,X>0,使当x>X,即有f(x)<M
x → − ∞ x \to -\infty x ∀ ε > 0 , ∃ X > 0 , 使当 x < − X 时 , 即有 ∣ f ( x ) − A ∣ < ε \forall \varepsilon>0, \exists X>0, \\使当x<-X时, \\即有|f(x)-A|<\varepsilon ε>0,X>0,使当x<X,即有f(x)A<ε ∀ M > 0 , ∃ X > 0 , 使当 x < − X 时 , 即有 ∣ f ( x ) ∣ > M \forall M>0, \exists X>0, \\使当x<-X时, \\即有|f(x)|>M M>0,X>0,使当x<X,即有f(x)>M ∀ M > 0 , ∃ X > 0 , 使当 x < − X 时 , 即有 f ( x ) > M \forall M>0, \exists X>0, \\使当x<-X时, \\即有f(x)>M M>0,X>0,使当x<X,即有f(x)>M ∀ M > 0 , ∃ X > 0 , 使当 x < − X 时 , 即有 f ( x ) < − M \forall M>0, \exists X>0, \\使当x<-X时, \\即有f(x)<-M M>0,X>0,使当x<X,即有f(x)<M

极限运算法则

  1. 如果 lim ⁡ f ( x ) = A , lim ⁡ g ( x ) = B \lim f(x)=A, \lim g(x)=B limf(x)=A,limg(x)=B,那么:
    (1) lim ⁡ [ f ( x ) ± g ( x ) ] = lim ⁡ f ( x ) ± lim ⁡ g ( x ) = A ± B \lim [f(x) \pm g(x)]=\lim f(x) \pm \lim g(x) = A \pm B lim[f(x)±g(x)]=limf(x)±limg(x)=A±B
    (2) lim ⁡ [ f ( x ) ⋅ g ( x ) ] = lim ⁡ f ( x ) ⋅ lim ⁡ g ( x ) = A ⋅ B \lim[f(x) \cdot g(x)]=\lim f(x) \cdot \lim g(x) = A \cdot B lim[f(x)g(x)]=limf(x)limg(x)=AB
    (3)若又有 B ≠ 0 B \neq 0 B=0,则 lim ⁡ f ( x ) g ( x ) = lim ⁡ f ( x ) lim ⁡ g ( x ) = A B \lim \frac{f(x)}{g(x)}= \frac{\lim f(x)}{\lim g(x)}=\frac {A}{B} limg(x)f(x)=limg(x)limf(x)=BA
    • 如果 lim ⁡ f ( x ) \lim f(x) limf(x)存在,而 c c c为常数,那么 lim ⁡ [ c f ( x ) ] = c lim ⁡ f ( x ) \lim [cf(x)]=c \lim f(x) lim[cf(x)]=climf(x)
    • 如果 lim ⁡ f ( x ) \lim f(x) limf(x)存在,而 n n n是正整数,那么 lim ⁡ [ f ( x ) ] n = [ lim ⁡ f ( x ) ] n \lim [f(x)]^n=[\lim f(x)]^n lim[f(x)]n=[limf(x)]n
  2. 设有数列 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn},如果 lim ⁡ n → ∞ x n = A , lim ⁡ n → ∞ y n = B \lim \limits_{n \to \infty}x_n=A, \qquad \lim \limits_{n \to \infty}y_n=B nlimxn=A,nlimyn=B那么
    (1) lim ⁡ n → ∞ ( x n ± y n ) = A ± B \lim \limits_{n \to \infty}(x_n \pm y_n)=A \pm B nlim(xn±yn)=A±B
    (2) lim ⁡ n → ∞ ( x n ⋅ y n ) = A ⋅ B \lim \limits_{n \to \infty}(x_n \cdot y_n)=A \cdot B nlim(xnyn)=AB
    (3)当 y n ≠ 0 ( n = 1 , 2 , ⋯   ) y_n \neq 0 (n=1, 2, \cdots) yn=0(n=1,2,) B ≠ 0 B \neq 0 B=0时, lim ⁡ n → ∞ x n y n = A B \lim \limits_{n \to \infty}\frac{x_n}{y_n}=\frac{A}{B} nlimynxn=BA
  3. 如果 φ ( x ) ≥ ψ ( x ) \varphi(x) \geq \psi(x) φ(x)ψ(x),而 lim ⁡ φ ( x ) = A , lim ⁡ ψ ( x ) = B \lim \varphi(x)=A, \lim \psi(x)=B limφ(x)=A,limψ(x)=B,那么 A ≥ B A \geq B AB
  4. 复合函数的极限运算法则:设函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]是由函数 u = g ( x ) u=g(x) u=g(x)与函数 y = f ( u ) y=f(u) y=f(u)复合而成, f [ g ( x ) ] f[g(x)] f[g(x)]在点 x 0 x_0 x0的某去心邻域内有定义,若 lim ⁡ x → x 0 g ( x ) = u 0 , lim ⁡ u → u 0 f ( u ) = A \lim \limits_{x \to x_0}g(x)=u_0, \lim \limits_{u \to u_0}f(u)=A xx0limg(x)=u0,uu0limf(u)=A,且存在 δ 0 > 0 \delta_0 >0 δ0>0,当 x ∈ U ˚ ( x 0 , δ 0 ) x \in \mathring{U}(x_0,\delta_0) xU˚(x0,δ0)时,有 g ( x ) ≠ u 0 g(x) \neq u_0 g(x)=u0,则 lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ u → u 0 f ( u ) = A \lim \limits_{x \to x_0}f[g(x)]=\lim \limits_{u \to u_0}f(u)=A xx0limf[g(x)]=uu0limf(u)=A

无穷小的计算

  1. 有限个无穷小之和是无穷小;
  2. 有界函数与无穷小的乘积是无穷小;
    • 常数与无穷小的乘积是无穷小
    • 有限个无穷小的乘积是无穷小

无穷小的比较

  1. 如果 lim ⁡ β α = 0 \lim \frac{\beta}{\alpha}=0 limαβ=0,那么就说 β \beta β是比 α \alpha α高阶的无穷小,记作 β = o ( α ) \beta=o(\alpha) β=o(α)
  2. 如果 lim ⁡ β α = ∞ \lim \frac{\beta}{\alpha}=\infty limαβ=,那么就说 β \beta β是比 α \alpha α低阶的无穷小
  3. 如果 lim ⁡ β α = c ≠ 0 \lim \frac{\beta}{\alpha}=c \neq 0 limαβ=c=0,那么就说 β \beta β是比 α \alpha α同阶的无穷小
  4. 如果 lim ⁡ β α k = c ≠ 0 , k > 0 \lim \frac{\beta}{\alpha^k}=c \neq 0, k>0 limαkβ=c=0,k>0,那么就说 β \beta β是关于 α \alpha α k k k阶无穷小
  5. 如果 lim ⁡ β α = 1 \lim \frac{\beta}{\alpha}=1 limαβ=1,那么就说 β \beta β α \alpha α等价无穷小,记作 α ∼ β \alpha \sim \beta αβ
  • 定理1: β \beta β α \alpha α是等价无穷小的充要条件为 β = α + o ( α ) \beta=\alpha+o(\alpha) β=α+o(α)
  • 定理2:设 α ∼ α ~ , β ∼ β ~ \alpha \sim \widetilde{\alpha}, \beta \sim \widetilde{\beta} αα ,ββ ,且 lim ⁡ β ~ α ~ \lim \frac{\widetilde{\beta}}{\widetilde{\alpha}} limα β 存在,则 lim ⁡ β α = lim ⁡ β ~ α ~ \lim \frac{\beta}{\alpha}=\lim \frac{\widetilde{\beta}}{\widetilde{\alpha}} limαβ=limα β

定理2表明,求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替。

常用的等价无穷小关系式:
ln ⁡ ( 1 + x ) ∼ x   ( x → 0 ) \ln(1+x) \sim x \, (x\to 0) ln(1+x)x(x0) e x − 1 ∼ x   ( x → 0 ) e^x-1 \sim x \, (x \to 0) ex1x(x0) ( 1 + x ) α − 1 ∼ α x   ( x → 0 ) (1+x)^\alpha-1 \sim \alpha x\, (x \to 0) (1+x)α1αx(x0)

极限存在准则

夹逼准则

数列极限存在准则:如果数列 { x n } , { y n } \{x_n\}, \{y_n\} {xn},{yn} { z n } \{z_n\} {zn}满足下列条件:

(1)从某项起,即 ∃   n 0 ∈ N + \exist \, n_0 \in \bm{N}_+ n0N+,当 n > n 0 n > n_0 n>n0时,有 y n ≤ x n ≤ z n ; y_n \leq x_n \leq z_n; ynxnzn;
(2) lim ⁡ n → ∞ y n = a , lim ⁡ n → ∞ z n = a \lim \limits_{n \to \infty}y_n=a, \lim \limits_{n \to \infty}z_n=a nlimyn=a,nlimzn=a

那么数列 { x n } \{x_n\} {xn}的极限存在,且 lim ⁡ n → ∞ x n = a \lim \limits_{n \to \infty}x_n=a nlimxn=a

上述准则可推广到函数的极限:

如果

(1)当 x ∈ U ˚ ( x 0 , r ) x \in \mathring{U}(x_0,r) xU˚(x0,r)(或 ∣ x ∣ > M |x|>M x>M)时, g ( x ) ≤ f ( x ) ≤ h ( x ) ; g(x) \leq f(x) \leq h(x); g(x)f(x)h(x);
(2) lim ⁡ x → x 0 ( x → ∞ ) g x = A , lim ⁡ x → x 0 ( x → ∞ ) h x = A \lim \limits_{x \to x_0 \atop (x \to \infty)}g_x=A, \lim \limits_{x \to x_0 \atop (x \to \infty)}h_x=A (x)xx0limgx=A,(x)xx0limhx=A

那么数列 lim ⁡ x → x 0 ( x → ∞ ) f x \lim \limits_{x \to x_0 \atop (x \to \infty)}f_x (x)xx0limfx的极限存在,且等于 A A A

柯西(Cauchy)极限存在准则

  • 若函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某个左邻域内单调并且有界,则 f ( x ) f(x) f(x) x 0 x_0 x0的左极限 f ( x 0 − ) f(x_0^-) f(x0)必定存在;
  • 若函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某个右邻域内单调并且有界,则 f ( x ) f(x) f(x) x 0 x_0 x0的右极限 f ( x 0 + ) f(x_0^+) f(x0+)必定存在;
  • 若函数 f ( x ) f(x) f(x) x 0 x_0 x0趋近于正无穷的时候单调并且有界,则 f ( x ) f(x) f(x)的极限 lim ⁡ x → + ∞ f ( x ) \lim \limits_{x \to + \infty}f(x) x+limf(x)必定存在;
  • 若函数 f ( x ) f(x) f(x) x 0 x_0 x0趋近于负无穷的时候单调并且有界,则 f ( x ) f(x) f(x)的极限 lim ⁡ x → − ∞ f ( x ) \lim \limits_{x \to -\infty}f(x) xlimf(x)必定存在;

柯西极限存在准则:数列 { x n } \{x_n\} {xn}收敛的充要条件是:对于任意给定的正整数 ε \varepsilon ε,存在正整数 N N N,使得当 m > N , n > N m>N, n>N m>N,n>N时,有 ∣ x n − x m ∣ < ε |x_n-x_m|<\varepsilon xnxm<ε
该准则的几何意义表示:对于任意给定的正数 ε \varepsilon ε,在数轴上一切具有足够大号码的点 x n x_n xn中,任意两点间的距离小于 ε \varepsilon ε

两个重要的极限

极限 lim ⁡ x → 0 sin ⁡ x x = 1 \lim \limits_{x \to 0}\frac{\sin x}{x}=1 x0limxsinx=1

证明:
因为,
lim ⁡ x → 0 cos ⁡ x = 1 且 lim ⁡ x → 0 1 = 1 \lim \limits_{x \to 0}\cos x=1 且 \lim \limits_{x \to 0}1=1 x0limcosx=1x0lim1=1
另外,当 0 < x < π 2 0<x<\frac{\pi}{2} 0<x<2π时,
sin ⁡ x < x < tan ⁡ x 1 < x sin ⁡ x < 1 cos ⁡ x cos ⁡ x < sin ⁡ x x < 1 \quad \\ \sin x < x < \tan x \quad \\ \quad \\ 1< \frac{x}{\sin x} < \frac{1}{\cos x} \\ \quad \\ \cos x < \frac{\sin x}{x} < 1\\ sinx<x<tanx1<sinxx<cosx1cosx<xsinx<1
上式对于 x ∈ ( − π 2 , 0 ) x \in (-\frac{\pi}{2},0) x(2π,0)也成立
所以,
lim ⁡ x → 0 sin ⁡ x x = lim ⁡ x → 0 cos ⁡ x = lim ⁡ x → 0 1 = 1 \lim \limits_{x \to 0}\frac{\sin x}{x}=\lim \limits_{x \to 0}\cos x=\lim \limits_{x \to 0}1=1 x0limxsinx=x0limcosx=x0lim1=1

证明完毕!

极限 lim ⁡ x → ∞ ( 1 + 1 x ) x \lim \limits_{x \to \infty}\left(1+\frac{1}{x}\right)^x xlim(1+x1)x

证明:
按牛顿二项公式1将式子展开:
  f ( x ) = ( 1 + 1 x ) x = 1 + x 1 ! ⋅ 1 x + x ( x − 1 ) 2 ! ⋅ 1 x 2 + x ( x − 1 ) ( x − 2 ) 3 ! ⋅ 1 x 3 + ⋯ + x ( x − 1 ) ⋯ ( x − x + 1 ) x ! ⋅ 1 x x = 1 + 1 + 1 2 ! ( 1 − 1 x ) + 1 3 ! ( 1 − 1 x ) ( 1 − 2 x ) + ⋯ + 1 x ! ( 1 − 1 x ) ( 1 − 2 x ) ⋯ ( 1 − x − 1 x ) \begin{align*}\ f(x) &=\left(1+\frac{1}{x}\right)^x \\ & = 1+\frac{x}{1!}\cdot\frac{1}{x}+\frac{x(x-1)}{2!}\cdot\frac{1}{x^2}+\frac{x(x-1)(x-2)}{3!}\cdot\frac{1}{x^3}+ \cdots +\frac{x(x-1)\cdots (x-x+1)}{x!}\cdot\frac{1}{x^x} \\ &=1+1+\frac{1}{2!}\left(1-\frac{1}{x}\right)+\frac{1}{3!}\left(1-\frac{1}{x}\right)\left(1-\frac{2}{x}\right)+\cdots +\frac{1}{x!}\left(1-\frac{1}{x}\right)\left(1-\frac{2}{x}\right)\cdots \left(1-\frac{x-1}{x}\right) \\ \end{align*}  f(x)=(1+x1)x=1+1!xx1+2!x(x1)x21+3!x(x1)(x2)x31++x!x(x1)(xx+1)xx1=1+1+2!1(1x1)+3!1(1x1)(1x2)++x!1(1x1)(1x2)(1xx1)
类似地,
  f ( x + 1 ) = 1 + 1 + 1 2 ! ( 1 − 1 x ) + 1 3 ! ( 1 − 1 x ) ( 1 − 2 x ) + ⋯ + 1 x ! ( 1 − 1 x ) ( 1 − 2 x ) ⋯ ( 1 − x − 1 x ) + 1 ( x + 1 ) ! ( 1 − 1 x + 1 ) ( 1 − 2 x + 1 ) ⋯ ( 1 − x x + 1 ) \begin{align*}\ f(x+1) =& 1+1+\frac{1}{2!}\left(1-\frac{1}{x}\right)+\frac{1}{3!}\left(1-\frac{1}{x}\right)\left(1-\frac{2}{x}\right)+\cdots +\\ & \frac{1}{x!}\left(1-\frac{1}{x}\right)\left(1-\frac{2}{x}\right)\cdots \left(1-\frac{x-1}{x}\right) + \\ & \frac{1}{(x+1)!}\left(1-\frac{1}{x+1}\right)\left(1-\frac{2}{x+1}\right)\cdots \left(1-\frac{x}{x+1}\right) \end{align*}  f(x+1)=1+1+2!1(1x1)+3!1(1x1)(1x2)++x!1(1x1)(1x2)(1xx1)+(x+1)!1(1x+11)(1x+12)(1x+1x)
比较 f ( x ) f(x) f(x) f ( x + 1 ) f(x+1) f(x+1)的展开式,可以发现 f ( x ) < f ( x + 1 ) f(x)<f(x+1) f(x)<f(x+1)
因此 f ( x ) f(x) f(x)单调增加的;
另外,将展开式中各项括号内的数用更大的数来代替,可得2
f ( x ) ≤ 1 + ( 1 + 1 2 ! + 1 3 ! + ⋯ + 1 n ! ) ≤ 1 + ( 1 + 1 2 + 1 2 2 + ⋯ + 1 2 n − 1 ) = 1 + 1 − 1 2 n 1 − 1 2 = 3 − 1 2 n − 1 < 3 \begin{align*} f(x) & \leq 1+\left(1+\frac{1}{2!} + \frac{1}{3!} + \cdots +\frac{1}{n!}\right) \\ & \leq 1+\left(1+\frac{1}{2} + \frac{1}{2^2} + \cdots +\frac{1}{2^{n-1}}\right) \\ &=1+\frac{1-\frac{1}{2^n}}{1-\frac{1}{2}}=3-\frac{1}{2^{n-1}}<3 \end{align*} f(x)1+(1+2!1+3!1++n!1)1+(1+21+221++2n11)=1+12112n1=32n11<3
这说明 f ( x ) f(x) f(x)有界的。

所以 lim ⁡ x → ∞ ( 1 + 1 x ) x \lim \limits_{x \to \infty}\left(1+\frac{1}{x}\right)^x xlim(1+x1)x的极限存在。证明完毕!

其实, lim ⁡ x → ∞ ( 1 + 1 x ) x \lim \limits_{x \to \infty}\left(1+\frac{1}{x}\right)^x xlim(1+x1)x就是欧拉常数 e e e

函数的连续性与间断点

函数的连续性

设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某一领域内有定义,如果 lim ⁡ Δ x → 0 Δ y = lim ⁡ Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 \lim _{\Delta x \to 0}\Delta y=\lim _{\Delta x \to 0}[f(x_0+\Delta x)-f(x_0)]=0 Δx0limΔy=Δx0lim[f(x0+Δx)f(x0)]=0或者 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x \to x_0}f(x)=f(x_0) xx0limf(x)=f(x0)那么就称函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0连续。

左连续 如果 lim ⁡ x → x 0 − f ( x ) = f ( x 0 − ) \lim \limits_{x \to x_0^-}f(x)=f(x_0^-) xx0limf(x)=f(x0)存在且等于 f ( x 0 ) f(x_0) f(x0),即 f ( x 0 − ) = f ( x 0 ) f(x_0^-)=f(x_0) f(x0)=f(x0)那么就说函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0左连续
右连续 如果 lim ⁡ x → x 0 + f ( x ) = f ( x 0 + ) \lim \limits_{x \to x_0^+}f(x)=f(x_0^+) xx0+limf(x)=f(x0+)存在且等于 f ( x 0 ) f(x_0) f(x0),即 f ( x 0 + ) = f ( x 0 ) f(x_0^+)=f(x_0) f(x0+)=f(x0)那么就说函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0右连续

连续函数 在区间上每一点都连续的函数,叫做在该区间上的连续函数,或者说函数在该区间上连续。如果区间包括端点,那么函数在右端点连续是指左连续,在左端点连续是指右连续。连续函数的图形是一条连续而不间断的曲线。

函数的间断点

设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某去心邻域内有定义。在此前提下,如果函数 f ( x ) f(x) f(x)有下列三种情形之一:

  • x = x 0 x=x_0 x=x0没有定义;
  • 虽在 x = x 0 x=x_0 x=x0有定义,但 lim ⁡ x → x 0 f ( x ) \lim \limits_{x \to x_0}f(x) xx0limf(x)不存在;
  • 虽在 x = x 0 x=x_0 x=x0有定义,且 lim ⁡ x → x 0 f ( x ) \lim \limits_{x \to x_0}f(x) xx0limf(x)存在,但 lim ⁡ x → x 0 f ( x ) ≠ f ( x 0 ) \lim \limits_{x \to x_0}f(x)\neq f(x_0) xx0limf(x)=f(x0)

那么函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0为不连续,而点 x 0 x_0 x0称为函数 f ( x ) f(x) f(x)的不连续点或间断点

间断点种类:

  • 第一类间断点(左右极限都存在)
    • 可去间断点(左右极限相等,但在 x 0 x_0 x0无定义)
    • 跳跃间断点(左右极限不相等)
  • 第二类间断点
    • 无穷间断点( lim ⁡ x → x 0 f ( x ) = ∞ \lim \limits_{x \to x_0}f(x)=\infty xx0limf(x)=
    • 震荡间断点

连续函数的运算

连续函数的四则运算

定理1:设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x)在点 x 0 x_0 x0连续,则它们的和(差) f ± g f \pm g f±g、积 f ⋅ g f \cdot g fg及商 f g \frac{f}{g} gf(当 g ( x 0 ) ≠ 0 g(x_0) \neq 0 g(x0)=0时都在点 x 0 x_0 x0连续

反函数与复合函数的连续性

  1. 定理2:如果函数 y = f ( x ) y=f(x) y=f(x)在区间 I x I_x Ix上单调增加(或单调减少)且连续,那么它的反函数 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y)也在对应的区间 I y = y ∣ y = f ( x ) , x ∈ I x I_y={y|y=f(x), x \in I_x} Iy=yy=f(x),xIx上单调增加(或单调减少)且连续

  2. 定理3:设函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]由函数 u = g ( x ) u=g(x) u=g(x)与函数 y = f ( u ) y=f(u) y=f(u)复合而成, U ˚ ( x 0 ) ⊂ D f ∘ g \mathring{U}(x_0) \subset D_{f \circ g} U˚(x0)Dfg;若 lim ⁡ x → x 0 g ( x ) = u 0 \lim \limits_{x \to x_0}g(x)=u_0 xx0limg(x)=u0,而函数 y = f ( u ) y=f(u) y=f(u) u = u 0 u=u_0 u=u0连续,则 lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ u → u 0 f ( u ) = f ( u 0 ) \lim_{x \to x_0}f[g(x)]=\lim_{u \to u_0}f(u)=f(u_0) xx0limf[g(x)]=uu0limf(u)=f(u0)或者 lim ⁡ x → x 0 f [ g ( x ) ] = f [ lim ⁡ x → x 0 g ( x ) ] \lim_{x \to x_0}f[g(x)]=f[\lim_{x \to x_0}g(x)] xx0limf[g(x)]=f[xx0limg(x)] x → x 0 x \to x_0 xx0换成 x → ∞ x \to \infty x可得类似的定理

一般地,对于形如 u ( x ) v ( x )   ( u ( x ) > 0 , u ( ) x ) ≠ 1 ) u(x)^{v(x)} \, (u(x)>0, u()x) \neq 1) u(x)v(x)(u(x)>0,u()x)=1)的函数(通常称为幂指函数),如果 lim ⁡ u ( x ) = a > 0 ,   lim ⁡ v ( x ) = b \lim u(x) = a >0, \, \lim v(x)=b limu(x)=a>0,limv(x)=b那么, lim ⁡ u ( x ) v ( x ) = a b \lim u(x)^{v(x)}=a^b limu(x)v(x)=ab

  1. 定理4:设函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]由函数 u = g ( x ) u=g(x) u=g(x)与函数 y = f ( u ) y=f(u) y=f(u)复合而成, U ( x 0 ) ⊂ D f ∘ g U(x_0) \subset D_{f \circ g} U(x0)Dfg;若函数 u = g ( x ) u=g(x) u=g(x) x = x 0 x=x_0 x=x0连续,且 g ( x 0 ) = u 0 g(x_0)=u_0 g(x0)=u0,而函数 y = f ( u ) y=f(u) y=f(u) u = u 0 u=u_0 u=u0连续,则复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] x = x 0 x=x_0 x=x0也连续

初等函数的连续性

  • 基本初等函数在它们的定义域内都是连续的;
  • 又由上述定理4可得:一切初等函数在其定义区间内都是连续的(定义区间:包含在定义域内的区间)
    也可以表达为:
    如果 f ( x ) f(x) f(x)是初等函数,且 x 0 x_0 x0 f ( x ) f(x) f(x)的定义区间内的点,那么 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x \to x_0}f(x)=f(x_0) xx0limf(x)=f(x0)

闭区间上连续函数的性质

有界性与最大值最小值定理

在闭区间上连续的函数在该区间上有界且一定能取得它的最大值和最小值

零点定理与介值定理

零点定理 设函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a, b] [a,b]上连续,且 f ( a ) f(a) f(a) f ( b ) f(b) f(b)异号(即 f ( a ) ⋅ f ( b ) < 0 ) f(a) \cdot f(b)<0) f(a)f(b)<0),则在开区间 ( a , b ) (a, b) (a,b)内至少有一点 ξ \xi ξ,使 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0

介值定理 设函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a, b] [a,b]上连续,且在这区间的端点取不同的函数值 f ( a ) = A ,   f ( b ) = B f(a)=A, \, f(b)=B f(a)=A,f(b)=B则对于 A A A B B B之间的任意一个数 C C C,在开区间 ( a , b ) (a,b) (a,b)内至少有一点 ξ \xi ξ,使得 f ( ξ ) = C ( a < ξ < b ) f(\xi)=C \quad (a<\xi<b) f(ξ)=C(a<ξ<b)

推论 在闭区间 [ a , b ] [a, b] [a,b]上连续的函数 f ( x ) f(x) f(x)的值域为闭区间 [ m , M ] [m, M] [m,M],其中 m m m M M M依次为 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的最小值与最大值。

一致连续性

一致连续性 设函数 f ( x ) f(x) f(x)在区间 I I I上有定义;如果对于任意给定的正数 ε \varepsilon ε,总存在正数 δ \delta δ,使得对于区间 I I I上任意两点 x 1 , x 2 x_1, x_2 x1,x2,当 ∣ x − 1 − x 2 ∣ < δ |x-1 - x_2|<\delta x1x2<δ时,有 ∣ f ( x 1 ) − f ( x 2 ) ∣ < ε |f(x_1)-f(x_2)|<\varepsilon f(x1)f(x2)<ε那么称函数 f ( x ) f(x) f(x)在区间 I I I上一致连续。

一致连续性定理 如果函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a, b] [a,b]上连续,那么它在该区间上一致连续


  1. 关于牛顿二项式定理,可以参考本专栏的《牛顿二项式定理》 ↩︎

  2. 等比数列前 n n n项和 S n = a 1 ( 1 + q n ) 1 − q S_n=\frac{a_1(1+q^n)}{1-q} Sn=1qa1(1+qn), 其中 q q q为公比,且 q ≠ 1 q \neq 1 q=1 a 1 a_1 a1为首项 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值