R语言中mgcv包的gam函数与线性回归的性能比较

110 篇文章 ¥59.90 ¥99.00
本文探讨了R语言中,当线性回归无法有效拟合数据时,如何使用mgcv包的gam函数建立广义加性模型。通过对比线性回归和gam函数的拟合优度及可视化结果,展示了gam函数在处理非线性关系数据上的优势,建议在非线性问题中考虑使用广义加性模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言中mgcv包的gam函数与线性回归的性能比较

在R语言中,我们通常使用线性回归来建立预测模型,但是在某些情况下,线性回归并不能很好地拟合数据。为了解决这个问题,可以使用广义加性模型(Generalized Additive Models,简称GAMs),其中一个常用的实现是R语言的mgcv包中的gam函数。在本文中,我们将比较mgcv包中的gam函数与线性回归的性能。

首先,让我们导入所需的库和数据集。假设我们有一个关于房价的数据集,其中包含一些影响房价的因素,如房屋面积、地理位置等。

# 导入所需库
library(mgcv)
library(ggplot2)

# 读取数据集
data <- read.csv("house_prices.csv")

接下来,我们使用线性回归拟合一个简单的模型,以房屋面积作为自变量,房价作为因变量。

# 线性回归
lm_model <- lm(price ~ area, data = data)

# 绘制拟合曲线
ggplot(data, aes(x = area, y = price)) +
  geom_point() +
  geom_smooth(method = "lm", formula 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值