利用支持向量机(SVM)算法进行手写数字识别

102 篇文章 ¥59.90 ¥99.00
本文介绍了使用OpenCV-Python和SVM算法实现手写数字识别的过程,包括数据集准备、模型训练、预测准确率计算及新图像分类预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用支持向量机(SVM)算法进行手写数字识别

手写数字识别是计算机视觉领域中的一个经典问题,它涉及将手写数字图像分类为对应的数字标签。在本文中,我们将使用OpenCV-Python库和支持向量机(SVM)算法来实现手写数字识别。

首先,我们需要准备一个手写数字数据集,该数据集包含一系列手写数字图像及其对应的标签。这样的数据集可以从公共数据集或在线资源中获取。在本示例中,我们将使用MNIST数据集,它是一个常用的手写数字数据集。

接下来,我们将使用OpenCV-Python库加载MNIST数据集。我们可以使用以下代码来实现这一步骤:

import cv2
import numpy as np
from sklearn import svm
from sklearn.model_selection import 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值