R语言实战:使用DFFITS度量分析回归模型中每个样本的影响程度
概述
在回归分析中,每个观测值对回归模型的拟合结果都会产生一定程度的影响。为了评估每个样本对回归模型的影响程度,常用的方法之一是使用DFFITS度量。DFFITS是一种统计指标,用于衡量当删除一个观测值时,回归模型所做的预测会发生多大的变化。本文将介绍如何使用R语言计算回归模型中每个样本的DFFITS度量,并提供相应的源代码。
理论背景
DFFITS是通过计算每个样本与整个回归模型之间的残差差异来衡量观测值的影响程度。具体来说,DFFITS度量指标可以通过以下公式计算得出:
DFFITS_i = (hat{y}i - y_i) / (SE{(-i)} * sqrt{h_i})
其中,DFFITS_i表示第i个观测值的DFFITS度量;hat{y}i表示在不包含第i个观测值的情况下,基于模型得出的预测值;y_i表示第i个观测值的实际观测值;SE{(-i)}表示在不包含第i个观测值的情况下,模型的标准误差;h_i表示第i个观测值的杠杆率(Leverage)。
计算步骤
下面,我们将使用R语言来计算回归模型中每个样本的DFFITS度量。首先,我们假设已经构建了一个线性回归模型,并且已经提取了模型的残差、标准误差和杠杆率等信息。
Step 1: 构建回归模型