绘制 ROC 曲线和瀑布图(RAD 分数)Python

98 篇文章 ¥59.90 ¥99.00
本文介绍了如何在Python中利用特定库绘制ROC曲线和瀑布图,以评估分类模型性能。示例代码展示了ROC曲线与瀑布图的绘制过程,帮助理解ROC曲线与假阳性、真阳性率的关系,以及瀑布图在展示阈值影响方面的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

绘制 ROC 曲线和瀑布图(RAD 分数)Python

ROC 曲线和瀑布图通常用于评估分类模型的性能。ROC 曲线显示真阳性率和假阳性率之间的关系,而瀑布图则显示阈值的影响。

以下是 Python 中用于绘制 ROC 曲线和瀑布图(RAD 分数)的代码示例:

from sklearn.metrics import roc_curve
from sklearn.metrics import auc
import matplotlib.pyplot as plt
import numpy as np

# 生成虚拟数据
y_actual = [1,1,0,1,0,0,1,1,1,0]
score = [0.9,0.8,0.7,0.6,0.55,0.52,0.4,0.35,0.2,0.1]

# 计算 ROC 曲线和 AUC
fpr, tpr, thresholds = roc_curve(y_actual, score)
roc_auc = auc(fpr, tpr)

# 绘制 ROC 曲线
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.title('Re
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值