绘制 ROC 曲线和瀑布图(RAD 分数)Python
ROC 曲线和瀑布图通常用于评估分类模型的性能。ROC 曲线显示真阳性率和假阳性率之间的关系,而瀑布图则显示阈值的影响。
以下是 Python 中用于绘制 ROC 曲线和瀑布图(RAD 分数)的代码示例:
from sklearn.metrics import roc_curve
from sklearn.metrics import auc
import matplotlib.pyplot as plt
import numpy as np
# 生成虚拟数据
y_actual = [1,1,0,1,0,0,1,1,1,0]
score = [0.9,0.8,0.7,0.6,0.55,0.52,0.4,0.35,0.2,0.1]
# 计算 ROC 曲线和 AUC
fpr, tpr, thresholds = roc_curve(y_actual, score)
roc_auc = auc(fpr, tpr)
# 绘制 ROC 曲线
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.title('Re