朴素贝叶斯分类器 - Python 实践
在机器学习领域中,朴素贝叶斯分类器是一种简单而强大的分类算法。它基于贝叶斯定理和特征条件独立性假设,广泛应用于文本分类、垃圾邮件过滤、情感分析等任务。本文将介绍朴素贝叶斯分类器的原理,并提供使用Python实现的示例代码。
朴素贝叶斯分类器的原理
朴素贝叶斯分类器基于贝叶斯定理,其核心思想是通过计算后验概率来进行分类。给定一个待分类的样本x和一组特征变量F,朴素贝叶斯分类器通过以下公式计算后验概率P(C|F):
P(C|F) = P© * P(F|C) / P(F)
其中,C表示类别,F表示特征变量,P(C|F)表示在给定特征变量F的条件下样本属于类别C的概率,P©表示类别C的先验概率,P(F|C)表示在类别C下特征变量F的条件概率,P(F)表示特征变量F的先验概率。
朴素贝叶斯分类器的"朴素"之处在于它假设特征变量之间相互独立,即特征变量的出现概率与其他特征变量无关。这个假设简化了计算,但也可能引入一定的误差。尽管如此,朴素贝叶斯分类器在实践中仍然表现良好,并且具有较快的训练和预测速度。
朴素贝叶斯分类器的Python实现
下面是使用Python实现朴素贝叶斯分类器的示例代码:
import