高等数学——简单直观地了解定积分

本文介绍了定积分的概念,通过扇形面积和曲线矩形面积的计算例子,阐述了微积分的基本思想。文章解释了定积分的定义,强调了连续函数和有界函数在有限个断点上的可积性。此外,还探讨了定积分的加法性质、延续性质和保号性。最后预告了下一篇文章将涉及定积分的计算方法。
摘要由CSDN通过智能技术生成

本文始发于个人公众号:TechFlow,原创不易,求个关注


今天是高等数学第11篇文章,我们来看看定积分的相关内容。

对于很多人来说定积分的内容其实早在高中就已经接触过了,比如在高中物理当中,我们经常使用一种叫做”微元法“的方法来解决一些物理问题。但实际上所谓的”微元法“本质上来说其实就是一种微积分计算方法。我们来看两个简单的例子。

微分与积分的例子

第一个例子是扇形的面积计算,先别急着笑,我知道这个是初中的内容。扇形的面积谁不会算,扇形的面积等于圆的面积乘上圆心角嘛。

圆的面积我们都知道 S = π r 2 S=\pi r^2 S=πr2,如果是扇形的话,再加上圆心角,我们用弧度制来表示圆心角,可以直接进行计算: S = π r 2 θ S=\pi r^2 \theta S=πr2θ

除此之外还有别的办法吗?

当然是有的,我们来看下面这张图:

在下面这张图当中,我们从扇形上切了一小块出来,做了一个直角三角形。我们令这个直角三角形无限窄,那么它的面积就可以近似于这一块小扇形的面积。

直角三角形的面积很简单,我们都会算,我们令短的直角边长度是l。那么这个小三角形的面积就等于 1 2 l r \frac{1}{2}lr 21lr

我们如此操作,可以把这一块扇形分割成无数个这样的小三角形,最后我们把这些小三角形的面积全部加起来,就可以得到扇形的面积。由于l趋向于0,每一个小三角形和小扇形的面积差的极限都是0,所以可以近似看成它们相等。

这样一番操作之后,我们可以用无数个小三角形的面积来代替扇形的面积。对于这些小三角形而言,它们的面积都是 1 2 l r \frac{1}{2}lr 21lr。把它们进行累加,本质上也就是把这些所有的短边进行累加。那么显然,这些所有的短边累加之后的结果就是扇形的弧长

我们假设这块扇形的弧长是L,那么整个扇形的面积还可以表示成 1 2 r L \frac{1}{2}rL 21rL

我们可以简单验证一下,一个完整的圆也可以看成是一个扇形。一个完整的圆,它的弧长,也就是周长是 2 π r 2\pi r 2πr。我们代入刚才的公式,得到的结果和圆的面积公式吻合,所以我们的计算是正确的。

在这个例子当中扇形分割成的每个小三角形是一样的,所以我们可以直接进行累加。如果我们微分之后的结果不再是固定的,是变化的,那么应该怎么办?

我们再来看另外一个例子:

比如我们要求a和b两点围成的曲线矩形的面积,我们也可以将矩形进行拆分。我们可以无限拆分成多个小的矩形的面积去替代。我们可以很容易证明,当 Δ x \Delta x Δx趋向于0的时候,那一块小的矩形面积和曲线矩形的面积相等。所以我们可以把它拆分成无数个这样的矩形,然后将所有的面积求和,就得到了曲线围成的面积。

对于每一块矩形而言,它们的宽都是 Δ x \Delta x Δx,但是它们的高都不相同。但是很容易看出来,它们的高都是区间里某一个坐标的函数值。其实我们可以写出来这些序列的值,它们分别是: a, a+ Δ x \Delta x Δx, a + 2 Δ x \Delta x Δx, …, b。

为了方便书写,我们令这个序列等于 { ξ 1 , ξ 2 , ⋯   , ξ n } \{\xi_1, \xi_2, \cdots, \xi_n\} { ξ1,ξ2,,ξn}

所以曲线围成的面积可以写成:

S c =

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值