计算R方指标和均方根误差(RMSE)的自定义函数(R语言)

80 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用R语言编写自定义函数`calculate_r_squared_rmse`来计算R方指标和均方根误差(RMSE),用于评估回归模型的性能。函数通过计算观测值与预测值的差异来得出这两个指标,并提供了示例代码展示其用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算R方指标和均方根误差(RMSE)的自定义函数(R语言)

R方指标(R-squared)和均方根误差(Root Mean Square Error,RMSE)是评估回归模型性能常用的指标。本文将介绍如何使用R语言编写自定义函数来计算这两个指标。

首先,我们将创建一个名为"calculate_r_squared_rmse"的函数,该函数接受两个参数:观测值(observed)和预测值(predicted)。以下是完整的函数代码:

calculate_r_squared_rmse <- function(observed, predicted) {
  # 计算平均观测值
  mean_observed <- mean(observed)
  
  # 计算总平方和(Total Sum of Squares,TSS)
  tss <- sum((observed - mean_observed)^2)
  
  # 计算残差平方和(Residual Sum of Squares,RSS)
  rss <- sum((observed - predicted)^2)
  
  # 计算R方指标
  r_squared <- 1 - rss / tss
  
  # 计算均方根误差(RM
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值