Day 15
165
T1
Description
从前在一个美好的校园里,有一只(棵)可爱的弯枝理树。她内敛而羞涩,一副弱气的样子让人一看就想好好疼爱她。仅仅在她身边,就有许多女孩子想和她BH,比如铃,库特,等等。不过,除却巫山不是云,理树的心理只有那个帅气高大的男孩子——恭介,这让女孩子们不得不终日唉声叹气,以泪洗面。不过恭介是那样强大而完美,根本没有办法击败他,她们也只好咬牙忍痛度日,以待反击之时。
终于,她们获得了一次机会。机智的库特利用弹道学、密码学、宇宙学的知识设计出了一个密室,可以让进入的人无法从内部打开出口。库特设计密码的过程很奇葩,是由两个用整数坐标表示的n 维向量导出的。神奇的是,对于这两个向量中的任意一个,无论如何将它的坐标打乱(例如(a1,a2,a3)变成(a3,a1,a2)),打乱后的数量积都不会比原来的两个向量的数量积小。而库特就把原来的两个向量的数量积作为了密码。现在她们只用把恭介引入就可以了。但是,好事多磨,由于她们的粗心大意,在测试密室的时候不小心把自己给关了进去,而且还带走了密码纸。在外面的铃只找到了库特写着两个打乱后的向量的草稿。哇呼~能不能解救这些萌妹子,就看你了。
Input
三行。第一行一个整数N,表示N 维。
第2~3 行每行N 个整数,表示打乱后的两个向量(a1,a2,a3,a4…an),(b1,b2,b3,b4…bn).
Output
如题目要求,输出库特设计的密码
Sample Input
3
1 3 -5
-2 4 1
Sample Output
-25
Data Constraint
对于50%的数据 n<=8 , |ai|,|bi|<=1000
对于100%的数据 n<=1000, |ai|,|bi|<=100000
Solution
把a升序排序,b降序排序。
a
n
s
=
∑
i
=
1
n
a
i
×
b
i
ans=\sum_{i=1}^{n}a_i\times b_i
ans=i=1∑nai×bi
T2
Description
终于,在众亲们的奋斗下,最终boss 恭介被关进了库特设计的密室。正当她们松了一口气时,这个世界却发生了天翻覆地的变化:地面开始下沉,天空开始变成血红色,海水沸腾……一幅世界末日的图景。美鱼从她手中的古籍《若山牧水诗歌集》中发现了原因:白鸟は かなしからずや 空の青 海のあをにも 染まずただよふ 。大(xia)意(shuo)就是狡猾的恭介在创造这个世界的时候就篡改了法则。而这个法则的起源,就是一只生死之间的猫。这个猫被关在一个黑盒子里,盒子里有两个毒气罐,如果有任意一个毒气罐被打开那么猫将会被杀死,法则也能得到纠正。然而外界能控制的仅仅是这两个毒气罐被打开的概率。假设第一个毒气罐被打开的概率为1/x,第二个毒气罐为1/y(x,y 为正整数),那么当两个概率和为1/(n!)时,猫将会被莫名其妙地杀死。现在美鱼想知道,有多少对(x,y)可以让猫被莫名其妙杀死。
Input
一行,一个正整数n
Output
一行,满足题意的(x,y)对数。
Sample Input
6
Sample Output
135
Data Constraint
对于30%的数据 n<=6
对于60%的数据 n<=50
对于100%的数据 n<=700000
Solution
题意:给定
n
n
n,求方程
1
x
+
1
y
=
1
n
!
\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}
x1+y1=n!1的解的个数。(x,y为正整数)
1
x
+
1
y
=
1
n
!
\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}
x1+y1=n!1
x
+
y
x
y
=
1
n
!
\frac{x+y}{xy}=\frac{1}{n!}
xyx+y=n!1
n
!
(
x
+
y
)
=
x
y
n!(x+y)=xy
n!(x+y)=xy
n
!
x
+
n
!
y
=
x
y
n!x+n!y=xy
n!x+n!y=xy
y
(
x
−
n
!
)
=
x
y(x-n!)=x
y(x−n!)=x
y
=
x
x
−
n
!
y=\frac{x}{x-n!}
y=x−n!x
因为
y
>
0
y>0
y>0,所以
x
x
−
n
!
>
0
\frac{x}{x-n!}>0
x−n!x>0,即
x
>
n
!
x>n!
x>n!
令
x
=
n
!
+
a
x=n!+a
x=n!+a,代入得:
y
=
n
!
+
a
a
y=\frac{n!+a}{a}
y=an!+a
问题转化为求
n
!
n!
n!的因数个数。
如何求
n
!
n!
n!的因数个数呢?
我们先将[1, n]中的质数筛出来,设有cntp个质数,有:
n
!
=
∏
i
=
1
c
n
t
p
p
i
a
i
n!=\prod_{i=1}^{cntp}p_i^{a_i}
n!=i=1∏cntppiai
重点就是求出
a
i
a_i
ai。
我们进行如下操作:
1.a[i]+=n/p[i]; n/=p[i];
2.如果n>0,回到1,否则下一步。
3.a[i]=a[i]*2+1;
例如:
1,2,3,4,5,6
i=1时, p[1]=2。
a[1]+=6/2 , a[1]=3 n=3. //将2,4,6中的
2
1
2^1
21计入
a[1]+=3/2 , a[1]=4 n=1. //将4中的
2
2
2^2
22计入
a[1]+=1/2 , a[1]=4 n=1.
a[1]=a[1]*2+1 , a[1]=9.
最后 n ! n! n!的因数个数就是 ∏ i = 1 n a i \prod\limits_{i=1}^{n}a_i i=1∏nai
参考代码:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#define int long long
using namespace std;
const int N = 700010;
int n,cntp,p[N],ans=1;
bool a[N];
void init(){
for(int i=2; i<=n; i++){
if(a[i]){
continue;
}
p[++cntp]=i;
for(int j=2; j<=n/i; j++){
a[j*i]=1;
}
}
}
signed main() {
scanf("%lld",&n);
init();
for(int i=1; i<=cntp; i++){
int pri=p[i],now=n,tmp=0;
while(now>0){
now/=pri;
tmp+=now;
}
tmp<<=1;
tmp+=1;
ans*=tmp;
}
printf("%lld\n",ans);
return 0;
}
很明显这样写是过不了的…答案太大了,需要性能很好的高精度。
T3
Description
在美鱼和理树后援团拯救世界的同时,外表柔弱的理树也开始坚强起来,思考着离开这个世界的办法。误打误撞地,她遇上了正在教室破坏课桌打开迷宫入口的沙耶。沙耶告诉理树,这个世界的出口就是这个迷宫的出口。于是理树毫不犹豫地跟沙耶一起跳进了迷宫。在迷宫里,两个女孩子互帮互助,一会儿割绳子,一会儿泡温泉,一会儿雕冰块,跌跌撞撞地走到了终点。不出所料,终点也有一个机关在等着她们。
终点的机关是一个立着的 m × n m\times n m×n 的方格棋盘,在有些格子上放了一个玩偶,而有些地方直接挖了个大坑。只有取走所有玩偶才能打开出口。但是,由于奇怪的设定,理树和沙耶不能直接触碰玩偶,他们需要操纵机器人来收集它。机器人的走法很奇怪,和国际象棋的马有点像,只不过马可以走任意方向的12 路线,它们只会由上往下走rc(或c*r)的路线,不能回头。而机器人一旦经过一个有玩偶的格子,那个格子上的玩偶将被回收,并且在机器人离开时,那个格子会变成一个坑。理树可以把机器人放在任何一个有玩偶的格子上作为起点,也可以在任何一个有玩偶的格子回收机器人。机器人行走可以视为瞬移,只不过每一次设置新起点都会消耗1 时间。并且,有坑的格子不能落脚。
就在这个紧要关头,玩偶狂热爱好者的沙耶却流着口水智商归0。理树不得不转而求助你,帮忙计算出最少多少时间就能收集到所有玩偶。
Input
第一行包含4 个整数M、N、R、C,意义见问题描述。接下来M 行每行一个长度为N 的
字符串。如果某个字符是’.’,表示这个地方有一个玩偶;如果这个字符是’x’,表示这个地
方是坑。
Output
输出一个整数,表示最短时间。
Sample Input
3 3 1 2
…
.x.
…
Sample Output
4
Data Constraint
30%的数据中,1<=M,N<=4,1<=R,C<=3。
70%的数据中,1<=M<=20,1<=N<=4,1<=R,C<=3。
100%的数据中,1<=M,N<=50,1<=R,C<=10。
Solution
简单分析可得:
放置一次至少要收取一个玩偶(不然你放在一个偏僻的位置干什么啊),如果位置好,还可以通过移动收取掉更多的玩偶。
所以,当一个玩偶被收取,只会是被空降拿走或者是被移动收走。
考虑最劣的情况:每个玩偶都不能被移动收走,ans=n。
我们希望通过移动来减少答案。
处理出每个点一步可以走到的位置,连上一条边 u->v’。
我们进行二分图匹配,每匹配到一对点,都说明可以通过移动收取走一个玩偶,答案就会更优。
设tot是最大匹配数。
a
n
s
=
n
−
t
o
t
ans=n-tot
ans=n−tot
参考代码
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110;
int dx[4],dy[4];
int n,m,r,c,tot,ans;
int id[N][N];
bool a[N][N];
int cnte,head[N*N*2],match[N*N*2];
bool vis[N*N];
struct edge{
int to,nxt;
}e[N*N*4];
void add(int u,int v){
e[++cnte].to=v;
e[cnte].nxt=head[u];
head[u]=cnte;
}
char read(){
char ch=getchar();
while(ch!='.' && ch!='x'){
ch=getchar();
}
return ch;
}
bool dfs(int u){
for(int i=head[u]; i; i=e[i].nxt){
int v=e[i].to;
if(!vis[v]){
vis[v]=1;
if(!match[v] || dfs(match[v])){
match[v]=u;
match[u]=v;
return 1;
}
}
}
return 0;
}
int main() {
scanf("%d%d%d%d",&n,&m,&r,&c);
dx[0]=r;
dy[0]=c;
dx[1]=c;
dy[1]=r;
dx[2]=r;
dy[2]=-c;
dx[3]=c;
dy[3]=-r;
for(int i=1; i<=n; i++){
for(int j=1; j<=m; j++){
a[i][j]=read()=='.' ? 1 : 0;
if(a[i][j]){
id[i][j]=++tot;
}
}
}
for(int i=1; i<=n; i++){
for(int j=1; j<=m; j++){
if(!a[i][j]){
continue;
}
for(int k=0; k<4; k++){
int nx=i+dx[k];
int ny=j+dy[k];
if(a[nx][ny]){
add(id[i][j], id[nx][ny]+n*n);
}
}
}
}
for(int i=1; i<=tot; i++){
if(!match[i]){
memset(vis, 0, sizeof vis);
ans+=dfs(i);
}
}
printf("%d\n",tot-ans);
return 0;
}