BZOJ3036 绿豆蛙的归宿(期望dp)

本文详细解析了DAG(有向无环图)上的期望动态规划算法,通过反向连边和拓扑排序优化状态转移过程,实现从任意起点到终点的期望路径计算。代码示例展示了如何使用C++实现这一算法。

题解:

这题是DAG上的期望dp。
确定dp状态dp[i]表示从i点到n点所需要的期望值
之后就可以很轻易的想到反向连边,为了保证每次枚举到的点不是未枚举到点的自状态,需要用拓扑序来维护枚举顺序。之后就是dp的转移
dp[y]=(dp[x]+wei[i])/outdeg[y]dp[y]=(dp[x]+wei[i])/outdeg[y]dp[y]=(dp[x]+wei[i])/outdeg[y]

代码:

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <ctime>
#include <string>
#include <vector>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
//#include <random>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
#define PB push_back
#define MP make_pair
#define INF 1073741824
#define inf 1152921504606846976
#define pi 3.14159265358979323846
//#pragma comment(linker,"/STACK:10240000,10240000")
//mt19937 rand_(time(0));
const int N=3e5+7,M=2e6;
const long long mod=1e9+7;
inline int read(){int ret=0;char ch=getchar();bool f=1;for(;!isdigit(ch);ch=getchar()) f^=!(ch^'-');for(;isdigit(ch);ch=getchar()) ret=(ret<<1)+(ret<<3)+ch-48;return f?ret:-ret;}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll ksm(ll a,ll b,ll mod){int ans=1;while(b){if(b&1) ans=(ans*a)%mod;a=(a*a)%mod;b>>=1;}return ans;}
ll inv2(ll a,ll mod){return ksm(a,mod-2,mod);}//逆元
db wei[M];
int head[N],NEXT[M],ver[M],tot;void link(int u,int v,db w){ver[++tot]=v;NEXT[tot]=head[u];head[u]=tot;wei[tot]=w;}
int indeg[N],out[N];
db dp[N],p[N];
const db EPS=1e-9;
inline int sign(db a){return a<-EPS?-1:a>EPS;}
inline int cmp(db a,db b){return sign(a-b);}
//db dfs(int x){
//    if(cmp(dp[x],0)>=0) return dp[x];
//    db res=0.0;
//    db P=0.0;
//    for(int i=head[x];i;i=NEXT[i]){
//        int y=ver[i];
//        res+=dfs(y)+1.0*p[y]*wei[i]/indeg[y];
//        P+=1.0*p[y]/indeg[y];
//    }
//    p[x]=P;
//    dp[x]=res;
//    return res;
//}
int n;
void kahn(){
    queue<int>q;
    for(int i=1;i<=n;i++) if(indeg[i]==0) q.push(i);
    while(!q.empty()){
        int x=q.front();
        //cout<<x<<endl;
        q.pop();
        for(int i=head[x];i;i=NEXT[i]){
            int y=ver[i];
            dp[y]+=1.0*(wei[i]+dp[x])/out[y];
            indeg[y]--;
            if(indeg[y]==0) q.push(y);
        }
    }
}
int main(){
    //freopen("1.txt","r",stdin);
    //ios::sync_with_stdio(false);
    int m;
    db w;
    int u,v;
    tot=0;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++){
        scanf("%d%d%lf",&u,&v,&w);
        link(v,u,w);
        indeg[u]++;
        out[u]++;
    }
    for(int i=1;i<=n;i++) dp[i]=0,p[i]=0;
    dp[1]=0;
    kahn();
    printf("%.2f\n",(ll)((dp[1]*100)+0.5)/100.0);
    //cout << "time: " << (long long)clock() * 1000 / CLOCKS_PER_SEC << " ms" << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值