题解:
这题是DAG上的期望dp。
确定dp状态dp[i]表示从i点到n点所需要的期望值
之后就可以很轻易的想到反向连边,为了保证每次枚举到的点不是未枚举到点的自状态,需要用拓扑序来维护枚举顺序。之后就是dp的转移
dp[y]=(dp[x]+wei[i])/outdeg[y]dp[y]=(dp[x]+wei[i])/outdeg[y]dp[y]=(dp[x]+wei[i])/outdeg[y]
代码:
#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <ctime>
#include <string>
#include <vector>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
//#include <random>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
#define PB push_back
#define MP make_pair
#define INF 1073741824
#define inf 1152921504606846976
#define pi 3.14159265358979323846
//#pragma comment(linker,"/STACK:10240000,10240000")
//mt19937 rand_(time(0));
const int N=3e5+7,M=2e6;
const long long mod=1e9+7;
inline int read(){int ret=0;char ch=getchar();bool f=1;for(;!isdigit(ch);ch=getchar()) f^=!(ch^'-');for(;isdigit(ch);ch=getchar()) ret=(ret<<1)+(ret<<3)+ch-48;return f?ret:-ret;}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll ksm(ll a,ll b,ll mod){int ans=1;while(b){if(b&1) ans=(ans*a)%mod;a=(a*a)%mod;b>>=1;}return ans;}
ll inv2(ll a,ll mod){return ksm(a,mod-2,mod);}//逆元
db wei[M];
int head[N],NEXT[M],ver[M],tot;void link(int u,int v,db w){ver[++tot]=v;NEXT[tot]=head[u];head[u]=tot;wei[tot]=w;}
int indeg[N],out[N];
db dp[N],p[N];
const db EPS=1e-9;
inline int sign(db a){return a<-EPS?-1:a>EPS;}
inline int cmp(db a,db b){return sign(a-b);}
//db dfs(int x){
// if(cmp(dp[x],0)>=0) return dp[x];
// db res=0.0;
// db P=0.0;
// for(int i=head[x];i;i=NEXT[i]){
// int y=ver[i];
// res+=dfs(y)+1.0*p[y]*wei[i]/indeg[y];
// P+=1.0*p[y]/indeg[y];
// }
// p[x]=P;
// dp[x]=res;
// return res;
//}
int n;
void kahn(){
queue<int>q;
for(int i=1;i<=n;i++) if(indeg[i]==0) q.push(i);
while(!q.empty()){
int x=q.front();
//cout<<x<<endl;
q.pop();
for(int i=head[x];i;i=NEXT[i]){
int y=ver[i];
dp[y]+=1.0*(wei[i]+dp[x])/out[y];
indeg[y]--;
if(indeg[y]==0) q.push(y);
}
}
}
int main(){
//freopen("1.txt","r",stdin);
//ios::sync_with_stdio(false);
int m;
db w;
int u,v;
tot=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d%lf",&u,&v,&w);
link(v,u,w);
indeg[u]++;
out[u]++;
}
for(int i=1;i<=n;i++) dp[i]=0,p[i]=0;
dp[1]=0;
kahn();
printf("%.2f\n",(ll)((dp[1]*100)+0.5)/100.0);
//cout << "time: " << (long long)clock() * 1000 / CLOCKS_PER_SEC << " ms" << endl;
return 0;
}

本文详细解析了DAG(有向无环图)上的期望动态规划算法,通过反向连边和拓扑排序优化状态转移过程,实现从任意起点到终点的期望路径计算。代码示例展示了如何使用C++实现这一算法。
5090

被折叠的 条评论
为什么被折叠?



