SEERC 2017 B Bricks(dp)

博客探讨了SEERC 2017 B Bricks问题,这是一个关于在有限长度的队列中进行砖块放置的操作。题目要求在m次操作后计算队列的不同可能形状。博主通过动态规划(dp)方法解决,定义dp[i]表示在位置i不放砖时,前面所有操作形成的合法状态数,并用num[i]记录空位i的方案数。通过对操作次数的前缀和统计,枚举空位并更新num值,最终得出答案为dp[n+1],其中n是队列长度。
摘要由CSDN通过智能技术生成

题意

在一个长为n的空队列中,m次操作间一块砖扔到 p o s i pos_i posi的位置当 p o s i pos_i posi已经有砖则砖落到任意两侧的空位,不得超过头尾。问m次操作后队列有几种可能的形状

题解

d p [ i ] dp[i] dp[i]代表第i处不放砖,前面放满了 i i i前面操作的所有砖头, n u m [ i ] num[i] num[i]代表空位为i的方案数。
明显的看出num[0]=1,我们发现m次操作的顺序与结果无关,因此可以先跑一遍类似前缀和统计当前位置前共有几次操作,然后枚举空位即可(空位即没出现过m次操作的位置,即arr[i]==arr[i-1]
之后我们写出转移式子dp[i]=num[i-1-arr[i-1]]即为i处为空位的结果,之后更新num值即num[i-arr[i]]+=dp[i]即可。
注意我们定义的dp值是该处为空位的方案数,因此我们只要枚举到n+1的位置(因为n+1的位置必定是空位)输出dp[n+1]即是答案

代码

/**
 *     author:     TelmaZzzz
 *     create:     2019-09-01-10.28.29
**/
#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <ctime>
#include <string>
#include <vector>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
//#include <random>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
void _R(int &x) { scanf("%d", &x); }
void _R(ll &x) { scanf("%lld", &x); }
void _R(db &x) { scanf("%lf", &x); }
void _R(char &x) { scanf(" %c", &x); }
void _R(char *x) { scanf("%s", x); }
void R() {}
template<class T, class... U> void R(T &head, U &... tail) { _R(head); R(tail...); }
void _W(const int &x) { printf("%d", x); }
void _W(const ll &x) { printf("%lld", x); }
void _W(const db &x) { printf("%.16f", x); }
void _W(const char &x) { putchar(x); }
void _W(const char *x) { printf("%s", x); }
template<class T> void _W(const vector<T> &x) { for (auto i = x.begin(); i != x.end(); _W(*i++)) if (i != x.cbegin()) putchar(' '); }
void W() {}
template<class T, class... U> void W(const T &head, const U &... tail) { _W(head); putchar(sizeof...(tail) ? ' ' : '\n'); W(tail...); }
#define rep(x,y,z) for(int x=y;x<=z;x++)
#define erp(x,y,z) for(int x=y;x>=z;x--)
#define PB push_back
#define MP make_pair
#define INF 1073741824
#define inf 1152921504606846976
#define pi 3.14159265358979323846
//#pragma comment(linker,"/STACK:10240000,10240000")
//mt19937 rand_(time(0));
const int N=1e6+7,M=2e6;
const long long mod=1e9+7;
inline int read(){int ret=0;char ch=getchar();bool f=1;for(;!isdigit(ch);ch=getchar()) f^=!(ch^'-');for(;isdigit(ch);ch=getchar()) ret=(ret<<1)+(ret<<3)+ch-48;return f?ret:-ret;}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll ksm(ll a,ll b,ll mod){int ans=1;while(b){if(b&1) ans=(ans*a)%mod;a=(a*a)%mod;b>>=1;}return ans;}
ll inv2(ll a,ll mod){return ksm(a,mod-2,mod);}//逆元
//int head[N],NEXT[M],ver[M],tot;void link(int u,int v){ver[++tot]=v;NEXT[tot]=head[u];head[u]=tot;}

int arr[N];
ll dp[N],ans[N];
int main(){
    //freopen("1.txt","r",stdin);
    //ios::sync_with_stdio(false);
    int n,m;
    int inp;
    R(n,m);
    rep(i,1,m){
        R(inp);
        arr[inp]++;
    }
    n++;
    rep(i,1,n) arr[i]+=arr[i-1];
    ans[0]=1;
    rep(i,1,n){
        if(arr[i]==arr[i-1]){
            if(i-1-arr[i-1]>=0){
                dp[i]=ans[i-1-arr[i-1]];
            }
            if(i-arr[i]>=0){
                ans[i-arr[i]]+=dp[i];
                ans[i-arr[i]]%=mod;
            }
        }
    }
    W(dp[n]);
    //cout << "time: " << (long long)clock() * 1000 / CLOCKS_PER_SEC << " ms" << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值