01
当黑客开始用AI,安全何去何从
你以为黑客制作一个攻击病毒要几个月?实际现在只要几分钟。
朝鲜黑客正在用AI批量生成钓鱼邮件——通过AI语音克隆技术,他们3秒之内轻易骗走了2亿港元。AI技术进步,受益者不单单是程序员,黑客的“军备”也全面升级。
(图:由 AI 配音的视频诈骗手段)
AI 技术的突破,重构了网络犯罪生态,传统认知中的"漏洞利用""代码攻击"早已变成为全链条AI化作战,通过AI,黑客不仅能在极短时间内完成多维度的攻击,还能迅速适应防御系统的变化。如此,AI从一个技术工具,逐渐演变成黑客“升级版”的杀手锏。
(图:由 AI 驱动的勒索软件集团黑客工具)
传统的安全防线,如防火墙和病毒扫描,可能在面对这些高度智能化的攻击时,显得力不从心。传统网络防御系统,正逐年被用上AI的黑客所突破,无论是个人隐私,还是企业数据,甚至是基础设施的安全,都面临着前所未有的威胁。
(图:部分基于AI的渗透测试和漏扫工具发布趋势)
这是一个网络世界的“黑暗转折”,也是我们每个人都必须警觉的未来挑战。当网络攻防从人类对抗升级为AI集群作战,我们该如何应对?
02
以子之矛,攻子之盾,AI重塑安全防御体系
AI工具化带来了两个问题:当黑客用上了AI,传统安全防御体系是否还安全?安全防御该怎么去和他们对抗?
最好的办法当然是“以子之矛,攻子之盾”,通过AI重塑安全防御体系,让传统的安全防御体系不再“传统”,黑客和安全人的对抗已经变成了AI攻防大战。
我们的AI安全团队也正在通过 AI 技术,升级安全防御体系,踏上AI安全新征途。与传统基于专家规则的"人工围栏"不同,被 AI 大模型重塑的安全防御系统具备几大独特的核心价值:
1. 全场景数据融合:突破流量/日志/行为数据的维度壁垒,打破信息孤岛,构建跨域联动的安全知识图谱,提升威胁检测的精准度;
2. 动态威胁狩猎:基于亿级对抗样本训练出的检测引擎,可精准识别0day漏洞、APT攻击等未知威胁,实时防御;
3. 自主进化能力:通过持续学习新型攻击模式,实现从威胁识别到防护策略的闭环优化,使安全水位持续提升。
(图:传统安全防御体系与大模型防御体系各维度对比)
安全告警优化:从信息过载到精准判定
“这么多告警,到底哪个才是真实的威胁?”如何快速从海量告警中找到真实风险这一直都是安全运营场景中关键目标之一。而传统安全运营存在三大痛点:
各安全防护系统数据割裂(WAF、HIDS、DDoS防护等)
老旧规则库难识别新型攻击(如AI生成的变种病毒、后门)
人工处理海量误报效率低下(真实威胁占比不足1%)
通过大模型强大的上下文理解能力,应用在意图识别和聚类分流场景,可以根据攻击级别、历史数据、网络行为进行关联分析,智能地筛选出最紧急和最具威胁的事件。
(图:大模型应用于安全告警研判的处置对比)
提供全面的告警信息和更加精准的判定方案,实现模型研判准确率85%以上,研判耗时缩减80%,大幅提升了安全告警在业务侧的有效感知。
(图:大模型研判告警的效率对比)
数据安全智能防护:AI对资产的精准布防
在数字经济时代,企业核心资产所面临的安全挑战愈发复杂。传统的安全防护措施主要依赖于关键词匹配和规则引擎,其采用的安全策略较为粗粒度,在匹配定制化业务场景时存在短板,进而导致误报频发,真正的安全威胁极易被淹没在海量的告警信息之中。
借助大模型的语义理解与总结能力,团队构建了"资产理解-行为解析-意图研判"的三维防护体系,对传输数据进行智能分类分级,并识别用户操作中的潜在风险。该防护体系通过自建知识库与RAG实现用户高危操作的精准识别与风险研判。
(图:大模型应用于数据安全告警的自动化处置)
实际应用中,大模型成功识别并拦截了伪装成常规业务操作的数据泄露行为。该防护体系将核心资产的识别准确率提升至96%,真正实现了从“全盘封堵”到“精准布防”的跨越。
威胁识别与响应:DDoS告警处置的自动化
重大业务活动服务器突然连不上?游戏玩家突然大批量掉线?如果业务遭受DDoS攻击不可用,持续1min、10min......
传统的 DDoS 安全响应依赖人工介入,提升安全响应效率也是围绕“人”这个中心进行,但即使装备了优良的装备,“手动挡”依旧无法满足业务对安全响应效率的需求。比如:
7×24小时人力监护的失效:人力受外部因素影响过多,总有穷尽时。
安全排查的"瑞士军刀困境":安全排查本身依赖的工具和数据较多。工具的集成也带来了频繁切换、重复输入的问题,影响安全响应效率(MTTD>30mins)。
针对DDoS细分场景多,意图识别难度大的问题,通过 RAG + 混元FUNCTION CALL模型,将意图识别场景由原先的5个扩展到40个,意图识别准确率由60%提升至98%。上线后常规事件处置效率提升80%,安全专家就可以专注于高危攻击研判,完成从"被动救火"到"主动免疫"的颠覆性升级。
(图:大模型应用于 DDOS 告警的自动化处置)
流量层漏洞检测:AI深度感知与防护
企业每天面对海量API扫描请求,安全团队在威胁噪音中难以有效识别真实漏洞攻击链,导致大量潜在风险处于不可见状态。传统WAF在面对新型绕过攻击时存在显著防护盲区,典型如分块传输、大包绕过、畸形报文等高级绕过手法均可突破边界防护。
(图:大模型在流量层漏洞的应用)
针对流量层漏洞检测场景,通过引入大模型提升识别和检测能力,上线运营实现攻击检测准确率80%,漏洞检测有效应对反射型XSS、SQL注入、SSRF等特征,并在现网检出真实案例并快速止损。不仅补充了入侵发现漏检&滞后性的防护能力缺口,也完善了安全防御体系中的漏洞的多节点检测覆盖。
(图:流量层漏洞深度感知真实检出示例)
03
拥抱AI,展望安全运营发展
AI技术会最终朝哪个方向发展,成为什么样子?没有人能下定论。虽它在资源和治理方面仍有挑战和不确定性,但其在安全领域的早已开始赋能,并启了快速迭代模式。以微软、谷歌为代表的科技巨头已率先布局AI,在安全运营与漏洞检测等领域取得显著突破。与此同时,国内企业也积极引入AI技术,在威胁情报和AI模型安全防护方面也取得初步成果。比如构建“智能检测-动态防护-可信生成”的安全防线,把AI深度融入安全运营来提升效率。
我们认为,以AI驱动安全动态防护,会是未来安全领域的主流方案。随着AI攻防博弈的升级,安全运营势必会从单一防护向体系化防御转型。而各位无论是关注安全还是守护安全的角色,在敌方早以AI为“刃”的态势下,都应拿起AI为盾,守护安全。