资源分配问题

投资6万元,拟投产某工厂A、B、C三种产品,其利润如下表所示,利用所学的动态规划法求解资源分配问题的方法求最佳投资方案。

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int INVESTMENT = 60000;
const int NUM_PRODUCTS = 3;
const int NUM_STEPS = 7;
double profits[NUM_PRODUCTS][NUM_STEPS] = {
    {0, 1.2, 1.5, 1.85, 2.4, 2.8, 3.3},
    {0, 1.8, 2.0, 2.25, 2.4, 2.5, 2.6},
    {0, 1.3, 1.9, 2.2, 2.45, 2.7, 3.0}
};
void dynamicProgramming() {
    vector<vector<double>> dp(NUM_PRODUCTS + 1, vector<double>(INVESTMENT + 1, 0));
    for (int i = 1; i <= NUM_PRODUCTS; i++) {
        for (int j = 0; j <= NUM_STEPS; j++) {
            for (int k = 0; k <= INVESTMENT; k++) {
                if (j * 10000 <= k) {
                    dp[i][k] = max(dp[i][k], dp[i - 1][k - j * 10000] + profits[i - 1][j]);
                }
            }
        }
    }
    cout << "最佳投资方案及利润:" << endl;
    cout << "总投资额:" << INVESTMENT << endl;
    for (int i = 1; i <= NUM_PRODUCTS; i++) {
        cout << "产品 " << char('A' + i - 1) << ": " << dp[i][INVESTMENT] << endl;
    }
}
int main() {
    dynamicProgramming();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值