sgu106



SGU106 The Equation
题目大意:
有一个方程ax+by+c=0。给定a,b,c,x1,x2,y1,y2,你需要得出,有多少整根满足以下条件:x1<=x<=x2,y1<=y<=y2。
整根指一个整数对(x,y)。
输入:
输入包含整数 a,b,c,x1,x2,y1,y2 用空格或者空行隔开。所有数的绝对值不超过10^8。
输出:
整根对对数

题目意思很简单,在集合{(x,y)|x∈[x1,x2]且y∈[y1,y2](x∈Z且y∈Z)}中找寻方程ax+by+c=0的有解对数。
我们只需先找出一对特殊解(x0,y0),就可以根据通向公式:
x=x0+bk且y=y0-ak; (k∈Z)求出所有解

首先可以特判a=0,b=0的情况。

接下来就是是求解特殊解(x0,y0)
根据扩展欧几里得算法,我们可以求出ax+by=gcd(x,y)的一个特殊解
普通的欧几里得算法(辗转相除法):
辗转相除法求解两个数字的最大公约数,相信大家都知道。
gcd(a,b)=gcd(b,a mod b)
证明:设a=b*k+m;(k∈Z)则m=a mod b;
假设一个公因数d满足d|a且d|b,又m=a-b*k;
∴d|m即d是(b,a mod b)的公因数

下面就是扩展算法:
对于方程ax+by=gcd(a,b)
1.当b=0时,gcd(a,b)=a,存在整数解对(x=1,y=0)使原式成立
2.当b!=0时,列出下列两个方程:
  ax1+by1=gcd(a,b)
  bx2+(a mod b)y2=gcd(b,a mod b)
(模拟辗转相除法的进行)
因为上述性质,即gcd(a,b)=gcd(b,a mod b)
得到:ax1+by1=bx2+(a mod b)y2
       ax1+by1=bx2+(a-a div b*b)y2
           ax1+by1=bx2+ay2-b(a div b)y2;
           a(x1-y2)+b(y1-x2+(a div b)y2)=0;

又上述式子对于任意a,b成立,据恒等定理有:
  x1-y2=0;                    即x1=y2;
  y1-x2+(a div b)y2=0; 即y1=x2-(a div b)*y2;
因此我们可以使用bx+(a mod b)y=gcd(b,a mod b)的解出方程ax+by=gcd(a,b)的特殊解。
对于ax+by=-c,只需要乘上一个(-c)/gcd(a,b)即可(若无法整除则说明无解)

那么符合条件的整根对数呢?
根据通向公式,有
x=x0+bk;
y=y0-ak;

即求解满足:x1<=x0+bk<=x2且y1<=y0-ak<=y2(k∈Z)的k的个数
不等式化为x1-x0<=bk<=x2-x0
                  y0-y2<=ak<=y0-y1
分a<0和a>0,b<0和b>0求解该不等式组
值得注意的一点:对于一个最小值n/m,当它为正数且n mod m!=0时,k>=n div m+1而不是k>=n div m(例如当k>=9/4时,可以发现k是无法取到(9 div 4==2)的)
                             同样,在最大值也类似。


下面附上我的代码(请注意,本题要使用long long):

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
long long ans;
struct equ
{
  long long x,y;
}spe;
long long lkx,rkx,lky,rky;
long long lx,rx,ly,ry;
long long a,b,c,g;
long long high(long long son,long long mom) //对最大值的处理
{
  if (son/mom>=0)
    return son/mom;
  return son/mom-(son%mom!=0);
}
long long low(long long son,long long mom) //对最小值的处理
{
  if (son/mom<=0)
    return son/mom;
  return son/mom+(son%mom!=0); 
}
struct equ Gcd(long long a,long long b) //扩展欧几里得算法
{
  struct equ re,re1;
  if (b==0)
    {
    g=a;
    re.x=1;
    re.y=0;
	}
  else
    {
    re1=Gcd(b,a%b);
	re.x=re1.y;
	re.y=re1.x-a/b*re1.y;
	}
  return re;
}
void init()
{
  int i;
  scanf("%I64d%I64d%I64d",&a,&b,&c);
  c*=-1;
  scanf("%I64d%I64d",&lx,&rx);
  scanf("%I64d%I64d",&ly,&ry);
  if (a==0 && b==0)
    {
    if (c==0)
      ans=(rx-lx+1)*(ry-ly+1);
    }
  else if (a==0 && b!=0)
    {
    if (c%b==0 && ly<=c/b && c/b<=ry)
	  ans=(rx-lx+1);
    }
  else if (a!=0 && b==0)
    {
    if (c%a==0 && lx<=c/a && c/a<=rx)
      ans=(ry-ly+1);
    }//此处以上为特判
  else
    {
    spe=Gcd(a,b);  //得到ax+by=gcd(a,b)特殊解 
    if (c%g==0)  //判断是否有解
      {
      b=b/g;
      a=a/g;
      c=c/g;    //简化方程
      spe.x*=c;
      spe.y*=c;  //得到ax+by=-c的特殊解
	  if (b>0)
	    {
	    lkx=low(lx-spe.x,b);
	    rkx=high(rx-spe.x,b);
        }
      else
        {
	    rkx=high(lx-spe.x,b);
	    lkx=low(rx-spe.x,b);
	    }
    
      if (a>0)
        {
	    rky=high(spe.y-ly,a);
	    lky=low(spe.y-ry,a);
	    }
	  else
	    {
	    lky=low(spe.y-ly,a);
	    rky=high(spe.y-ry,a);
	    }//分类讨论k的取值
	  ans=min(rkx,rky)-max(lkx,lky)+1;//计算答案
  	  if (ans<0) ans=0;//答案没有负数!!
	  }
    }
  printf("%I64d\n",ans);
  return ;
}
int main()
{
  init();
  return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值