2956: 模积和

以为是个大水题。。。
结果写了两小时
我数学真差.jpg
容易发现式子可以化成
这里写图片描述
然后拆开可以得到(四个)五个式子,分别计算即可…
(懒得写公式了,自己推一下吧
然后你就能发现死活过不去…
原因是啥呢…给的这个模数竟然不是个质数。
那么考虑用exgcd来求解逆元就行了
c++代码如下:

#include<bits/stdc++.h>
#define rep(i,x,y) for(register int i = x ;i <= y;++ i)
#define repd(i,x,y) for(register int i = x;  i >= y ;-- i)
using namespace std;
typedef long long ll;
template<typename T>inline void read(T&x)
{
    x = 0;char c;int sign = 1;
    do { c = getchar(); if(c == '-') sign = -1; }while(!isdigit(c));
    do { x = x * 10 + c - '0'; c = getchar(); }while(isdigit(c));
    x *= sign;
}

const int mod = 19940417;
ll n,m,n1,n2;
ll ans,cal1,cal2,cal3;

inline ll get(ll x) {return ((x+1)*x%mod)*n1%mod;}
inline ll get2(ll x) {return ((2*x+1)*(x+1)%mod*x%mod)*n2%mod;}

void exgcd(ll a,ll b,ll&x,ll&y)
{
    if(!b)
    {
        x = 1;y = 0;
        return;
    }
    exgcd(b,a%b,y,x);
    y -= a/b*x; 
}

int main()
{
    read(n); read(m);
    ll x;
    exgcd(1ll*2,mod,n1,x);n1 = (n1+mod)%mod;
    exgcd(1ll*6,mod,n2,x);n2 = (n2+mod)%mod;
    ans = n * m % mod * n %mod * m % mod;
    for(int i = 1,lst;i <= n; i = lst + 1)
    {
        lst = n/(n/i);
        cal1 = (cal1 + (get(lst) - get(i-1)) * (n/i)%mod)% mod;
    }
    for(int i = 1,lst;i <= m; i = lst + 1)
    {
        lst = m/(m/i);
        cal2 = (cal2 + (get(lst) - get(i-1)) * (m/i)%mod)% mod;
    }

    cal3 = min(n,m) * n % mod * m %mod ;
    for(int i = 1,lst;i <= min(n,m); i = lst + 1)
    {
        lst = min(m/(m/i),n/(n/i));
        cal3 = (cal3 + (mod - m*(get(lst) - get(i-1))%mod * (n/i) % mod))% mod;
        cal3 = (cal3 + (mod - n*(get(lst) - get(i-1))%mod * (m/i) %mod)) % mod;
        cal3 = (cal3 + (get2(lst) - get2(i - 1)+mod)%mod * (n/i)%mod * (m/i) %mod) % mod;
    }
    printf("%lld\n",((ans - cal3 - (m*m%mod*cal1%mod) - (n*n%mod*cal2%mod) + cal1 * cal2%mod) %mod + mod )%mod);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值