考虑两个点
x,y
x
,
y
不能构成一个合法方案,
必须满足对于存在点
z
z
满足
和
a[x].y<a[z].y<a[y].y
a
[
x
]
.
y
<
a
[
z
]
.
y
<
a
[
y
]
.
y
那么对于点
x
x
他的贡献即是他前面的单调递减的一堆点,且所有点的
发现并不能直接维护这个序列,考虑cdq分治。
满足前半段的
y<
y
<
后半段的
y
y
,且按 排序
那么此时值就可以被维护了…
此时可以用两个栈搞定。
c++代码如下:
#include<bits/stdc++.h>
#define rep(i,x,y) for(register int i = x; i <= y; ++ i)
#define repd(i,x,y) for(register int i = x; i >= y; -- i)
using namespace std;
typedef long long ll;
template<typename T>inline void read(T&x)
{
char c;int sign = 1;x = 0;
do { c = getchar(); if(c == '-') sign = -1; }while(!isdigit(c));
do { x = x * 10 + c -'0'; c = getchar(); }while(isdigit(c));
x *= sign;
}
const int N = 2e5 + 40;
int n;ll ans;
struct DATA{int x,y; }a[N];
inline bool cmpy(DATA a,DATA b) { return a.y < b.y; }
inline bool cmpx(DATA a,DATA b) { return a.x < b.x; }
int s1[N],top;
int s2[N],pos,en;
int s3[N],Top;
void cdq(int l,int r)
{
if(l >= r) return;
int mid = l + r >> 1,cnt = 0;
nth_element(a + l,a + 1 + mid,a + 1 + r,cmpy);
sort(a + l,a + mid + 1,cmpx); sort(a + 1 + mid,a + 1 + r,cmpx);
Top = top = en = 0; pos = l;
rep(i,mid+1,r)
{
while(top && a[s1[top]].y > a[i].y) --top;
while(pos <= mid && a[pos].x < a[i].x)
{
while(en && a[pos].y > a[s2[en]].y) -- en;
s2[++ en] = pos ++ ;
s3[Top = en] = a[s2[en]].x;
}
int k = lower_bound(s3 + 1,s3 + 1 + Top,a[s1[top]].x) - s3;
if(s3[k] > a[s1[top]].x || !top)
ans += Top - k + 1;
s1[++ top] = i;
}
cdq(l,mid); cdq(mid+1,r);
}
int main()
{
read(n);
rep(i,1,n) read(a[i].x), read(a[i].y);
cdq(1,n);
cout << ans << endl;
return 0;
}