Thames_h
码龄7年
关注
提问 私信
  • 博客:29,657
    29,657
    总访问量
  • 33
    原创
  • 665,807
    排名
  • 6
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 毕业院校: 西华大学
  • 加入CSDN时间: 2018-07-14
博客简介:

Thames_h的博客

查看详细资料
个人成就
  • 获得9次点赞
  • 内容获得5次评论
  • 获得26次收藏
创作历程
  • 1篇
    2023年
  • 1篇
    2022年
  • 3篇
    2021年
  • 28篇
    2020年
成就勋章
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

473人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

PYQT开发一个小软件模块记录

一些pyqt的学习记录
原创
发布博客 2023.03.09 ·
352 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

00PYQT5开发流程(不包含编程)

UI的程序不是.py因此需要进行转换,下面是配置.ui转换为.py的工具,pyUIC.下图是已经安装好的界面,未安装则点红色箭头处的“+”,傻瓜式安装。Program的路径是自己安装designer.exe的路径。生成.py后需要在生成的.py里面需要加入主函数才可以运行。Workingdirectory是当前项目路径。Workingdirectory是当前项目路径。Program路径是python.exe的路径。官网直接下载Pycharm即可。转换.ui到.py文件。...
原创
发布博客 2022.07.19 ·
405 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

01.python基础

1.输出age = 18print("my age is : %d "%age)name='呵呵'print("my name is %s,my age is %d"%(name,age))print('ni',"shi",'zhu',sep='.')print('hehe',end='') #不换行print('hehe',end='/n') #换行print('hehe',end='/t') #Tab2.输入password = input("请输入你的密码")print
原创
发布博客 2021.03.09 ·
342 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

01Linux基础

Linux基础重要的目录/:根目录,一般根目录下只存放目录,linux下有且只有一个根目录,所有的东西都是从根目录开始。/bin、 /usr/bin:可执行二进制文件的目录,如常用的命令ls,tar,mv,cat等/etc:系统配置文件存放的目录,不建议在此目录下存放可执行文件。/home:系统默认的用户家目录,新增用户账号时,用户的家目录都存放在此目录下。常用的Linux命令ls :查看当前文件夹下的内容。常用参数 :-a:查看所有文件-l:以列表方式显示文件的详细信息-h:
原创
发布博客 2021.01.28 ·
182 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

00.操作系统基础

1、什么的操作系统?操作系统(Operation System,OS)操作系统通常来说有两个作用:直接操作计算机硬件将操作硬件的代码封装成系统调用,供其他成员对计算机硬件进行操作。2、主流操作系统桌面操作系统(Windows ,macOS, Linux)服务器操作系统(Linux, Windows Server)嵌入式操作系统(Linux)移动设备操作系统(iOS,Android(基于Linux))下面主要是对Linux的学习内容3、Linux发行版本linux包含
原创
发布博客 2021.01.27 ·
135 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

20.函数式API建立模型

函数式API建立模型input = keras.Input(shape=(28, 28))x = keras.layers.Flatten()(input) #就理解成keras.layers.Flatten()是个函数,传递的函数是inputx=keras.layers.Dense(32, activation = ‘relu’)(x)x=kera.layers.Dropout(0.5)(x)x=keras.layers.Dense(64,activation=‘relu’)(x)out
原创
发布博客 2020.12.08 ·
367 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

19.补充:如何看训练结果来调参

看一下图一, 从这个图看,该网络有两个问题1、训练集的正确率不高,没有达到100%,因此网络的拟合能力有待调高2、测试数据正确率与训练数据正确率之间存在较大差距,说明过拟合那么先解决过拟和问题,添加dropout层可以看到上图,测试集和训练集的正确率已经接近,那么过拟合问题基本解决,现在来解决第一个问题。将神经元按照2的倍数次增加到每个层中。可以看到,现在网络的拟合能力就变得很好了。基本解决较大的两个问题,后面再调思路也类似。...
原创
发布博客 2020.12.08 ·
430 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

19.一维卷积

一维卷积对于某些序列处理问题,这种一维卷积神经网络的效果可以媲美RNN,而且计算代价通常要小很多。一维卷积神经网络在音频生成和机器翻译领域取得了巨大成功。对于文本分类和时间序列预测等简单任务,小型的一维卷积神经网络可以替代RNN,而且速度更快。那么如何理解一维卷积?这种一维卷积层可以识别序列中的局部模式,因为对每个序列段执行相同输入变换,所以在句子中某个位置学到的模式稍后可以在其他位置被识别,这使得一维卷积神经网络具有平移不变性。(即在前面的位置判断到一些例如词汇是不好的,在后面遇到同样的不好的词汇
原创
发布博客 2020.12.08 ·
1863 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

18.批标准化 &超参数选择原则

什么是批标准化Batch Normalization ,批标准化和普通的数据标准化类似,是将分散的数据统一的一种方法,也是优化神经网络的一种方法。批标准化,不仅在将数据输入模型之前对数据做标准化,而且还在网络的每一次变换之后都做标准化。即使在训练过程中均值和方差随时间发生变化,它也可以适应性地将数据标准化。优点我们知道在数据预处理时做标准化可以加速收敛,同理,在神经网络中使用标准化也可以加速收敛,而且还有更多的好处。(1)具有正则化的效果(2)提高模型的泛化能力(3)允许更高的学习速率从而加速
原创
发布博客 2020.12.07 ·
421 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

17.总结提高计算机视觉准确的方法

1、用自己的数据,自己搭建模型 ----> 缺点:数据集小【1】,训练出的模型不好,且速度慢.【1】解决数据集少的问题---->用图片增强的方法2、用预训练模型 ----->使用别人训练好的卷积基,用自己的数据集去训练分类器 ---->准确有所提升,但是数据集还是少了【1】,并且运算速度很慢【2】【1】解决数据集少的问题---->用图片增强的方法【2】因为预训练网络的层很多,重复计算的地方也很多,因此可以直接用卷积基先提取我们自己图片数据集特征,再建立分类器,将前面提取
原创
发布博客 2020.12.05 ·
545 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

16.常见的预训练网络模型

常见的预训练网络模型在imageNet上预训练过的用于图像分类的模型:VGG16 VGG19 ResNet50 InceptionV3 InceptionResNetV2 Xception MobileNet MobileNetV2 DenseNet NASNet具体查看 https://keras.io/zh/applications/现在最高的是 Xception...
原创
发布博客 2020.12.05 ·
580 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

15.网络迁移的一个优化

前面在14节中忘了可以再看看,引用了卷积基,但是发现一个问题就是训练的时候特别特别的慢,那么为啥慢,因为虽然不用训练卷积基的权重等参数(只需要训练全连接输出层),但是每一张图片都要经过它,反复提取特征,其实这是重复的操作。那么就考虑只让卷积基提取一次图片特征就好(就是每个图片只过一次卷积基),只反复训练输出层(全连接网络)。那么运用卷积基提取图片特征代码如何实现?def extract_features(data_generator, sample_count): i = 0 feat
原创
发布博客 2020.12.04 ·
179 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

复习一下前向传播和反向传播

深度学习网络本质深度学习网络本质是一种表示或者说映射网络简单来说就是:输入一张图片,输出 是猫的概率。那么什么是前向传播和反向传播呢?前向传播就是:输入一张图片,输出 是猫的概率。反向传播就是:计算这个概率值与实际的差距,叫做损失或者误差。误差将被反向传递给网络的每一层。上一节中,我们使用了预训练网络的前向传播过程使用网络做出预测,就是在使用网络前传播的过程为什么训练网络的过程很慢前向传播和反向传播本质上都是很快的,那为啥我们训练一个神经网络需要很长时间捏?因为训练过程是一个迭代循环
原创
发布博客 2020.12.04 ·
490 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

14.预训练网络(迁移学习)基础

预训练网络(迁移学习)基础预训练网络是一个保存好的之前已在大型数据集(大规模图像分类任务)上训练好的卷积神经网络。如果这个原始数据集足够大且足够通用,那么预训练网络学到的特征空间层次结构可以作为有效的提取视觉世界特征的模型。即使新问题和新任务与原始任务完全不同。预训练网络学习到的特征在不同问题之间是可移植的,这也是深度学习与浅层学习方法的一个重要优势。它使得深度学习对于小数据问题非常有效。Keras 内置预训练网络keras库中包含VGG16 ,VGG19 (16,19表示有多少层)Res
原创
发布博客 2020.12.04 ·
698 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

13.模型保存-加载

模型保存-加载整个模型Keras 模型保存为HDF5文件。(官网建议)不建议使用pickle 或cPickle 来保存Keras 模型。保存:使用model.save(filepath) 将Keras 模型保存到单个HDF5中。可以保存以下内容:模型的结构,允许重新创建模型模型的权重训练配置项(损失函数,优化器)优化器状态,允许准确地从上次结束的地方继续训练。代码:保存import h5pymodel.save('my_model.h5')加载:import kerasf
原创
发布博客 2020.12.04 ·
252 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

12.图片数据增强

图片数据增强当我们的样本有限,导致了模型泛化能力不强,就可以使用图像增强。图像增强:增加图像样本,不是凭空增加,而是根据现有的图像进行随机变换(翻转,放大,缩小,扭曲等)具体实现在图片生成器里面设置参数,非常简单train_datagen = ImageDataGenerator(rescale=1./255,rotation_range=40,) #图像增强例如旋转40°test_datagen = ImageDataGenerator(rescale=1./255)#ImageData
原创
发布博客 2020.12.04 ·
405 阅读 ·
2 点赞 ·
2 评论 ·
0 收藏

11.CNN实现真实猫狗图片分类

CNN实现真实猫狗图片分类个人认为,和上一节的mnist数据集里面的手写数字图片不同之处就是,真实的图片更加复杂,像素点更多。因此在对应的图片预处理方面会稍微麻烦一些。但是这个例子能让我们可以处理自己遇到的问题,不仅限于已有的mnist。不多说直接上代码import kerasfrom keras import layersimport numpy as npimport osimport shutil这一步主要是为了制作一个Keras 能够识别处理,直接读取的图片数据集文件结构为。 一
原创
发布博客 2020.12.04 ·
13127 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

10.卷积神经网络实现手写数字识别

卷积神经网络实现手写数字识别数据集还是使用的mnist 数据集首先说一下图片数据的格式:图片数据有四个参数 shape height width channels彩色图像: RGB(h,w,3) 灰白(h,w,1) or(h,w,4) e,g png图conv2d:图片输入的形状:batch,height,width,channelsmnist 的图像数据格式是(60000 * 28 * 28) 因此需要对其进行扩展train_image = np.expand_dims(train_
原创
发布博客 2020.12.03 ·
440 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

09.CNN基础

CNN基础卷积神经网络主要应用于计算机视觉相关任务,但它能处理的任务并不局限于图像,其实语音识别也是可以使用卷积神经网络的。当计算机看到一张图像(输入一张图像)时,它看的是一大堆像素值。当我们人类对图像进行分类时,这些数字毫无用处,可他们却是计算机可获得的唯一输入。现在的问题是:当你提供给计算机这一数组后,它将输出描述该图像属于某一特定分类的概率的数字(eg.80%是猫。15%是狗,5%是鸟)我们人类是通过特征来区分猫狗,现在想要计算机能够区分开猫和够的图片,就要计算搞清楚猫狗的各自的特有特征。
原创
发布博客 2020.12.03 ·
218 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

08.keras 实现电影评价预测

keras 实现电影评价预测import tensorflow as tffrom tensorflow import kerasimport numpy as npfrom matplotlib import pyplot as pltfrom keras import layersfrom keras import regularizers%matplotlib inlinedata = keras.datasets.imdb max_word = 10000 #最大取1W个单词
原创
发布博客 2020.12.03 ·
260 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多