人脸方向学习(四):Face Recognition-SphereFace解读

整理的人脸系列学习经验:包括人脸检测、人脸关键点检测、人脸优选、人脸对齐、人脸特征提取五个过程总结,有需要的可以参考,仅供学习,请勿盗用。https://blog.csdn.net/TheDayIn_CSDN/article/details/93199307

SphereFace解读

论文地址:SphereFace: Deep Hypersphere Embedding for Face Recognition

代码地址:https://github.com/wy1iu/sphereface

论文题目:SphereFace: Deep Hypersphere Embedding for Face Recognition

一、Abstract 摘要

论文主要讲解了在开集上的人脸识别问题,最好的特征提取模型是在特定的度量空间中,满足同一类的最大类内距离小于不同类的最小类间距离,作者提出了一种基于角度的loss函数angular softmax (A-Softmax) loss,这种loss函数可以学习角度判别特征。A-Softmax可以在超球面上施加角度判别约束,角边的大小可以通过参数m调整,m越大特征越可分,而且A-softmax也通过LFW、YTF、MegaFace Challenge进行了测试,在人脸识别任务上表现优秀。

二、Introduction简介

主要问题如上所示:人脸识别可以分为人脸验证(1:1)和人脸识别(1:N)问题;如上左侧红色框所示,人脸验证是一个分类问题,是指待测试人脸和对比人脸是不是同一个人(ID),常用于机场高铁进站台口的人证核验场景;人脸识别是一个距离度量问题,是比较待测试的人脸和测试库中哪些人最相似,是不是同一个人,常用与人脸检索等场景。

测试协议可以分为closed-set  和 open-set 两种

close-set,是所有的测试集都在训练集中出现过。所以预测结果是图片的ID,如果想要测试两张图片是否是同一个,那么就看这两张图片的预测ID是否一样,这是一个分类问题,只要求特征可分。

open-set,是测试的图片并没有在训练集中出现过,那么每张测试图片的预测结果是特征向量,如果想要比较两张图片的人脸是否属于同一个人,需要测试图像特征向量的距离。这里的人脸识别也可以看做是在探测集和画廊集之间的人脸验证,基本原理是距离度量问题,最关键的是学习有辨别力的大边特征。

解决Open-set上的人脸识别问题

理想的Open-set人脸识别学习到的特征应当在特定的度量空间中,满足同一类的最大类内距离小于不同类的最小类间距离,然而使用此标准学习特性通常比较困难,因为类内变异大,类间相似度高。

前人有用softmax loss学习人脸特征,然而softmax loss仅仅能够使得特征可分,还不能够使得特征具有可判别性。尽管有一些方法通过结合softmax loss和 contrastive loss、center loss去提高特征的可判别性,但是contrastive loss和center loss需要精心地构建图像对和三元组,不仅耗时而且构建的训练对会对识别性能影响很大。因此,作者提出了angular softmax(A-Softmax)loss。

对于一个二分类的softmax的决策边界是 ,如果限制而且,那么边界决策函数就就可以变形为

 

, ,那么这个边界决策函数仅仅x由w和所决定,因此损失函数关注的是特征的角度可分性。在此基础上,作者又引进了一个整数变量m(m>=1),m控制着角度间隔,类别1和类别2最终形式:

对类别1:

对类别2:

这就是二分类的A-Softmax loss。如下是softmax Loss ,modified softmax loss和A-softmax loss 在二分类的情况下的边界决策函数的形式,

下图则是效果展示。虽然是二分类形式,但是也可以一般化成多类别的分类。

三、Deep Hypersphere Embedding 深度嵌入超球面原理

 

 

 

 

相关博客:

https://blog.csdn.net/cdknight_happy/article/details/79268613

https://blog.csdn.net/qianqing13579/article/details/78288780

https://blog.csdn.net/weixin_42111770/article/details/80665419

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值