还是畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 48819 Accepted Submission(s): 22279
Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
Sample Output
3 5
思路:简单的Prim算法,模板题
#include<iostream>
#define maxn 110
using namespace std;
const int INF=0x3f3f3f3f;
int graph[maxn][maxn];
int prim(int graph[][maxn], int n)
{
int lowcost[maxn];
int mst[maxn];
int i, j, min, minid, sum = 0;
for (i = 2; i <= n; i++)
{
lowcost[i] = graph[1][i];
mst[i] = 1;
}
mst[1] = 0;
for (i = 2; i <= n; i++)
{
min = INF;
minid = 0;
for (j = 2; j <= n; j++)
{
if (lowcost[j] < min && lowcost[j] != 0)
{
min = lowcost[j];
minid = j;
}
}
sum += min;
lowcost[minid] = 0;
for (j = 2; j <= n; j++)
{
if (graph[minid][j] < lowcost[j])
{
lowcost[j] = graph[minid][j];
mst[j] = minid;
}
}
}
return sum;
}
int main(void)
{
int n,m,i,j,k,cost;
while(cin>>n&&n)
{
for(i=1;i<maxn;i++)
for(j=1;j<maxn;j++)
graph[i][j]=INF;
for(k=0;k<n*(n-1)/2;k++)
{
cin>>i>>j>>cost;
graph[i][j]=graph[j][i]=cost;
}
int ans=prim(graph,n);
cout<<ans<<endl;
}
}