神经网络与深度学习课程总结2

(1)深度学习平台介绍请添加图片描述请添加图片描述

(2)卷积神经网络基础

1.进化史

请添加图片描述

2.基本概念

全连接网络:链接权过多,难算难收敛,同时可能进入局部极小值,也容易产生过拟合问题。

局部连接网络:顾名思义,只有一部分权值连接。
部分输入和权值卷积。

填充:也就是在矩阵的边界上填充一些值,以增加矩阵的大小,通常用0或者复制边界像素来进行填充。
请添加图片描述步长:如图步长为2
请添加图片描述卷积神经网络结构:
请添加图片描述构成:由多个卷积层和下采样层构成,后面可连接全连接网络。
卷积层:k个滤波器。
下采样层:采用mean或max。
后面:连着全连接网络。

3.图像卷积的基本原理

抛出两个骰子,这两个骰子的结果和为4的概率和可以表示成一维卷积:
请添加图片描述
类似地,可以定义二维卷积为:
请添加图片描述
计算过程:滤波器f(x,y)左右,上下翻转,得到f(-x,-y)。再按照前述公式计算卷积。
请添加图片描述前向传播定义:
请添加图片描述当第l层为卷积+池化层
请添加图片描述

4.LeNet-5网络

![请添加图片描述](https://img-blog.csdnimg.cn/16e49d81861d4e33952c6b75ee533ca8.png
C1层由6个Feature map构成,每个神经元对输入进行55卷积,每个神经元对应55+1个参数,共6个feature map,2828个神经元,因此共有(55+1)6(2828)=122,304连接。

S2层(pooling层)
请添加图片描述C3层(卷积层)
请添加图片描述S4层与S2层工作原理相同
请添加图片描述C5层一共有120个神经元,每个神经元同样对输入进行55卷积,与S4全连接,总连接数(55*16+1)*120=48120。

F6层一共有84个神经元,与C5全连接,总连接数(120+1)*84=10164。

输出层由欧式径向基函数单元构成,每类一个单元,输出RBF单元计算输入向量和参数向量之间的欧式距离。
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值