(1)深度学习平台介绍
(2)卷积神经网络基础
1.进化史
2.基本概念
全连接网络:链接权过多,难算难收敛,同时可能进入局部极小值,也容易产生过拟合问题。
局部连接网络:顾名思义,只有一部分权值连接。
部分输入和权值卷积。
填充:也就是在矩阵的边界上填充一些值,以增加矩阵的大小,通常用0或者复制边界像素来进行填充。
步长:如图步长为2
卷积神经网络结构:
构成:由多个卷积层和下采样层构成,后面可连接全连接网络。
卷积层:k个滤波器。
下采样层:采用mean或max。
后面:连着全连接网络。
3.图像卷积的基本原理
抛出两个骰子,这两个骰子的结果和为4的概率和可以表示成一维卷积:
类似地,可以定义二维卷积为:
计算过程:滤波器f(x,y)左右,上下翻转,得到f(-x,-y)。再按照前述公式计算卷积。
前向传播定义:
当第l层为卷积+池化层
4.LeNet-5网络
![请添加图片描述](https://img-blog.csdnimg.cn/16e49d81861d4e33952c6b75ee533ca8.png
C1层由6个Feature map构成,每个神经元对输入进行55卷积,每个神经元对应55+1个参数,共6个feature map,2828个神经元,因此共有(55+1)6(2828)=122,304连接。
S2层(pooling层)
C3层(卷积层)
S4层与S2层工作原理相同
C5层一共有120个神经元,每个神经元同样对输入进行55卷积,与S4全连接,总连接数(55*16+1)*120=48120。
F6层一共有84个神经元,与C5全连接,总连接数(120+1)*84=10164。
输出层由欧式径向基函数单元构成,每类一个单元,输出RBF单元计算输入向量和参数向量之间的欧式距离。