1.判断单链表是否有环
使用两个slow, fast指针从头开始扫描链表。指针slow 每次走1步,指针fast每次走2步。如果存在环,则指针slow、fast会相遇;如果不存在环,指针fast遇到NULL退出。
就是所谓的追击相遇问题:
2.求有环单链表的环长
在环上相遇后,记录第一次相遇点为Pos,之后指针slow继续每次走1步,fast每次走2步。在下次相遇的时候fast比slow正好又多走了一圈,也就是多走的距离等于环长。
设从第一次相遇到第二次相遇,设slow走了len步,则fast走了2*len步,相遇时多走了一圈:
环长=2*len-len。
3.求有环单链表的环连接点位置 ( 看参考2更易懂 )
从Pos处将还剪开,变成了两条链相遇的问题。
如果有环,则快慢指针一定相遇在环上。
将环从快慢指针相遇结点剪开,则变成了两个单链表相交的问题。
设两个单链表的长度分别为N,M,用两个指针分别指向两链表第一个结点,
让位于长链表上的指针先走abs(N-M)步。然后一起走,相遇时则为环的起始点。
在环上相遇后,记录第一次相遇点为Pos,连接点为Join,假设头结点到连接点的长度为LenA,连接点到第一次相遇点的长度为x,环长为R。
第一次相遇时,slow走的长度 S = LenA + x;
第一次相遇时,fast走的长度 2S = LenA + n*R + x;
所以可以知道,LenA + x = n*R; LenA = n*R -x;
LenA 和 x 都是未知数,R也是。
通过遍历(从Head 到 Pos) 可求得 LenA + x .
通过遍历(从 Pos 到 Pos ),可求得R.
求交叉。
4.求有环单链表的链表长
上述2中求出了环的长度;3中求出了连接点的位置,就可以求出头结点到连接点的长度。两者相加就是链表的长度。
编程实现:
下面是代码中的例子:
转自:
求有环单链表中的环长、环起点、链表长
其他参考: