题目链接
https://codeforces.com/problemset/problem/431/C
题意
满k叉树,每一个节点边权依次为1-k,求起点为根,长为n,存在大于等于d的边权边的路径数
思路
简单dp,设dp[i][j]为长为i的方案数,当j为1时代表存在大于等于d的边权边路径数,0时代表全部。
dp[0][0]为1。当i>=j时,dp[i][0]+=dp[i-j][0](代表从i-j方案加上j到了现在,i==j时代表一步到位)。同时如果j>=d,那么dp[i][1]+=dp[i-j][0]代表i-j方案全部都可以加过来,否则dp[i][1]+=dp[i-j][1]。根据定义答案是dp[n][1]
教训/收获
太菜了,dp做的太少了,看数据范围和题意大概想到了用dp,但是dp练得太少想不出来,以后加练!
代码
#include<cstdio>
#include<iostream>
#include<iomanip>
#include<map>
#include<unordered_map>
#include<string>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define endl "\n"
#define int long long
//#define double long double
using namespace std;
typedef long long ll;
const int maxn=500;
const int inf=0x3f3f3f3f;
int n,m,k;
int ans=0;
const int mod=1000000007 ;
int dp[maxn][2];
signed main(){
IOS
#ifndef ONLINE_JUDGE
freopen("D:\\code\\IO\\in.txt","r",stdin);
freopen("D:\\code\\IO\\out.txt","w",stdout);
#endif
cin>>n>>m>>k;//长为n,m阶,最少k
//dp i 0表示长为i全部,dp i 1意为满足存在大于k的边的全部
dp[0][0]=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(i>=j)
dp[i][0]+=dp[i-j][0];
if(i>=j){
if(j>=k)
dp[i][1]+=dp[i-j][0];
else
dp[i][1]+=dp[i-j][1];
}
dp[i][0]%=mod;
dp[i][1]%=mod;
}
}
cout<<dp[n][1]%mod<<endl;
return 0;
}