- 博客(283)
- 问答 (5)
- 收藏
- 关注
原创 手把手教你在 LlamaIndex 中构建自定义查询引擎(进阶篇)
LlamaIndex 提供了基类,我们只需实现方法就能定义自己的查询逻辑。下面我们通过两种常见场景来演示如何构建自定义查询引擎。通过上面的例子,我们已经掌握了自定义查询引擎的基本实现。添加查询预处理:比如对查询进行关键词提取、意图识别优化检索逻辑:实现多阶段检索、基于用户历史的个性化检索增强响应控制:对 LLM 的 temperature、max_tokens 等参数进行动态调整集成工具调用:在查询过程中插入 API 调用、数据库查询等操作。
2025-06-12 19:06:49
709
原创 LlamaIndex 查询引擎响应模式全解析:从原理到场景的深度科普
拼接文本块生成多个子回答将子回答作为新 "块" 递归总结直到只剩一个最终回答将所有文本块拼接后截断至 LLM 窗口大小直接使用单一 prompt 生成总结不进行多轮优化或递归处理python运行# 为不同模式定制提示词[专业模式] 问题:{query_str}上下文:{context_str}学术回答:""",[专业模式] 已有回答:{existing_answer}新上下文:{context_str}请补充专业术语:"""
2025-06-12 18:46:27
684
原创 LlamaIndex 文档存储深度解析:从内存到主流数据库的集成实践
LlamaIndex 的文档存储体系通过统一接口抽象,实现了不同存储后端的无缝切换。开发者可根据数据规模、性能需求及技术栈选择合适方案。
2025-06-12 17:43:15
461
原创 深入理解 LlamaIndex 索引存储:从构建到持久化的完整闭环
在基于大语言模型的智能应用开发中,高效的索引管理是实现数据检索与知识问答的核心环节。LlamaIndex 作为一款强大的开源框架,提供了灵活的存储体系,其中 ** 索引存储(Index Stores)** 常被误解为 “仅构建索引”,但实际上它承担着更关键的职责 —— 管理索引元数据的持久化、共享与恢复。本文将从概念辨析、技术实现到实战闭环,带您彻底理解 LlamaIndex 索引存储的底层逻辑。python 输出:节点关系、向量映射表、索引版本号等轻量级元数据,而非原始文档内容。2. 索引存
2025-06-12 17:35:29
697
原创 LlamaIndex 图检索增强生成 (Graph RAG) 实战:从知识图谱到智能问答
关系建模能力:通过知识图谱的节点和边结构,显式表示实体间的复杂关系上下文构建方式:基于查询相关的实体子图构建上下文,而非碎片化文本块语义理解深度:能处理 "多跳关系查询"(如 "找出 A 公司投资的 B 公司的竞争对手")维度向量 RAGGraph RAG数据结构文本嵌入向量图结构(节点 + 关系)检索单元文本块实体子图关系处理隐式语义关联显式关系路径复杂查询依赖 LLM 推理直接检索关系路径通过 Graph RAG,我们实现了从 "文本匹配" 到 "关系推理" 的跨越。
2025-06-12 16:46:53
438
原创 LlamaIndex 属性图存储实战:基于 Neo4j 的图数据库集成与操作指南
通过直接操作属性图存储,我们绕过索引层实现了更灵活的图数据管理。从简单的实体关系到复杂的语义网络,Neo4j 与 LlamaIndex 的结合为知识图谱应用提供了强大支撑。
2025-06-12 16:31:45
455
原创 LlamaIndex 属性图索引实战(下):检索优化与企业级应用落地
当默认提取器无法满足行业需求时,我们可以自定义提取逻辑:python"""金融领域专属知识提取器"""# 先获取已有关系# 自定义金融实体提取(简化示例)if "股票" in text or "股价" in text:# 提取股票实体# 添加"提及"关系# 重新注入元数据"""简化的股票名称提取逻辑"""# 实际应用中应使用正则或NLP模型if "茅台" in text:return "贵州茅台"elif "腾讯" in text:return "腾讯控股"
2025-06-12 16:13:10
345
原创 LlamaIndex 属性图索引实战(上):从概念到知识图谱构建
通过 PropertyGraphIndex,我们实现了从 "文本索引" 到 "知识图谱" 的跨越。
2025-06-12 16:03:44
402
原创 解锁 LlamaIndex 的 ObjectIndex:任意 Python 对象的智能索引实践
对于特殊对象,我们可以自定义转换逻辑:python运行# 准备对象(使用哈希作为键)# 定义从节点到对象的转换函数# 定义从对象到节点的转换函数# 使用自定义映射构建索引这种方式适用于对象无法直接序列化,或需要自定义 ID 生成策略的场景。ObjectIndex 的核心原理:通过对象 - 节点映射层实现任意对象的索引三种检索模式:基础检索、后处理增强检索、自定义映射检索存储集成方案:以 Chroma 为例的持久化解决方案实战场景:工具对象的索引与智能代理应用。
2025-06-12 11:59:04
533
原创 手把手教你用 LlamaIndex 构建文档摘要索引:从原理到实战的深度解析
全文检索如同大海捞针,尤其是面对多文档集合时大语言模型直接处理长文档会消耗大量 token 资源缺乏结构化的索引导致相似内容无法被有效关联自动提取文档核心摘要(类似书的前言)将摘要与文档节点关联(类似目录章节对应页码)通过 LLM 或向量匹配实现语义检索(比关键词搜索更智能)我们以北美五座城市的维基百科数据为例(多伦多、西雅图等),来看看如何用代码构建这个智能索引系统。除了默认模式,我们还可以定制摘要生成的查询:python运行# 假设我们想让摘要更侧重地理和经济信息。
2025-06-12 11:57:35
415
原创 LlamaIndex 文本转 SQL 实战:从查询引擎到智能检索的全流程指南
通过本文的实战案例,我们详细了解了 LlamaIndex 中 Text-to-SQL 功能的各个方面,从基础查询引擎到高级的行 / 列检索,再到灵活的独立检索器。对于简单场景,使用直接指定表进行查询对于复杂数据库,使用实现动态表检索当遇到语义歧义问题时,结合行和列检索器提高准确性需要灵活集成时,使用独立的。
2025-06-11 20:50:42
746
原创 LlamaIndex 文档管理全攻略:从 CRUD 操作到动态更新的实战指南
LlamaIndex 的文档管理功能就像一个智能的知识管家,不仅能处理日常的增删改查,还能智能识别更新与新增,让你的索引始终保持最佳状态。在实际项目中,灵活运用这些功能,可以大幅降低维护成本,提升系统的响应速度。
2025-06-11 18:57:03
644
原创 突破单一检索瓶颈:LlamaIndex 混合向量检索的实战组合策略
混合向量检索就像为问答系统装上了 "双引擎",既具备语义理解能力,又保留了关键词精准匹配优势。在实际项目中,这种组合策略能有效解决单一检索的局限性,大幅提升用户体验。
2025-06-11 18:50:58
575
原创 深入理解 LlamaIndex 向量存储索引:从基础搭建到实战优化
在构建检索增强生成(RAG)应用时,我们常常会面临一个核心挑战:如何让大语言模型高效地从海量文档中检索到关键信息?这时候,向量存储索引就成为了破局的关键。作为 LlamaIndex 框架的核心组件,VectorStoreIndex 能帮我们轻松构建语义级检索能力。今天,我们就从实战角度出发,聊聊如何在项目中灵活运用这一强大工具。
2025-06-11 18:42:24
280
原创 LlamaIndex 索引原理深度解析:从架构到图示的全方位指南
摘要索引的存储结构可以用以下线性链条表示:plaintext所有节点按顺序存储,形成一个链式结构每个节点保留原始文档的分块内容不涉及复杂的索引结构,实现最简单摘要索引:最简单的线性存储,适合小规模数据向量存储索引:语义检索的核心,适合大规模非结构化数据树形索引:层次化知识组织,适合多粒度回答场景关键词表索引:精确匹配首选,适合垂直领域检索属性图索引:关系型知识建模,适合知识图谱应用。
2025-06-11 18:31:31
513
原创 LlamaIndex构建智能文档管理系统:基于摄入管道的增量更新实战
python# 构建摄入管道:包含文本分割和嵌入生成SentenceSplitter(), # 按句子分割文本HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"), # 生成文本嵌入向量],docstore=SimpleDocumentStore(), # 使用简单文档存储# 执行摄入流程print(f"已摄取 {len(nodes)} 个节点") # 输出:已摄取 2 个节点自动识别重复文档,避免冗余处理。
2025-06-11 17:44:03
237
原创 Redis 多模态数据摄取管道实战与深度解析:从企业知识库到智能检索全流程
在向量检索场景中,schema 相当于数据与索引之间的「契约」,本质是在告诉 Redis:"这是我要存储的数据结构,请按这个规则建立索引"。pythonschema=custom_schema, # 核心配置点数据以什么格式存储(如向量维度、文本类型)如何建立索引(如 HNSW 算法用于向量检索)支持哪些查询方式(如余弦相似度计算)当管道处理完所有 Node 后,会将数据写入 vector_store,此时 schemaschema 定义:规范数据结构,平衡存储与检索性能Redis 能力。
2025-06-11 17:25:43
375
原创 LlamaIndex 摄取管道深度解析:从数据处理到向量存储的全流程指南
摄取管道是 LlamaIndex 中负责数据处理与转换的核心组件,它通过一系列预设的转换(Transformations)对输入文档进行处理,最终生成可用于向量存储的节点(Nodes)。其核心设计理念是将数据处理流程模块化,允许开发者通过组合不同的转换组件来定制化数据处理流程。
2025-06-11 11:44:08
409
原创 LlamaIndex 节点分割器全解析:从文本切分到语义理解的终极指南
格式感知层:SimpleFileNodeParser 家族处理不同格式文档文本切分层:CodeSplitter/SentenceSplitter 等处理纯文本语义理解层:SemanticSplitterNodeParser 实现智能分块关系构建层:HierarchicalNodeParser/SentenceWindowNodeParser 建立上下文网络这些工具相互配合,能应对从简单文档到复杂知识库的各种场景。通过今天的分享,我们系统了解了 LlamaIndex 中节点分割的完整工具链。
2025-06-11 11:25:30
385
原创 LlamaIndex 网页数据采集全攻略:从单页读取到全站爬虫的实战指南
通过今天的分享,我们系统了解了 LlamaIndex 生态中丰富的网页读取工具。从简单的单页提取到复杂的全站爬虫,从基础 HTML 解析到 AI 驱动的结构化数据提取,这些工具足以应对绝大多数网页数据采集场景。
2025-06-11 11:11:13
285
原创 LlamaIndex 实战:SimpleDirectoryReader 文件加载全攻略
如果遇到 SimpleDirectoryReader 默认不支持的文件类型,我们可以通过扩展来实现:python# 自定义文件读取器# 返回文档列表,这里给文本添加了自定义内容# 注册自定义文件类型处理需要注意的是,这样的自定义会覆盖默认的文件提取器,如果需要同时支持默认类型,需要手动重新添加。通过 SimpleDirectoryReader,我们掌握了从本地和云端加载各种文件数据的核心技能,这是构建智能文档系统的重要一步。
2025-06-11 10:55:40
251
原创 LlamaIndex 上下文检索实战:从原理到优化的全流程解析
通过自定义提示词引导 LLM 生成更精准的上下文:python# 增强技术术语关联的提示词给定全文和当前文本块,生成包含以下内容的上下文:1. 技术术语的历史背景(如IBM 704的技术定位)2. 段落间的逻辑关系(如该段与前后文的关联)3. 相关事件的时间线全文:{full_text}当前块:{chunk_text}上下文:"""prompt=CUSTOM_PROMPT # 替换为自定义提示词。
2025-06-11 10:19:46
547
原创 LlamaIndex 进阶:用 Pydantic 提取器实现 LLM 结构化元数据提取
python"""文本块元数据模型"""entities: List[str] = Field(..., description="唯一实体列表")summary: str = Field(..., description="文本块摘要")contains_number: bool = Field(..., description="是否包含数字")字段说明entities:通过List[str]定义实体列表,自动去重summary:利用 LLM 生成简洁摘要:智能判断文本是否包含数值。
2025-06-10 17:48:31
1040
原创 LlamaIndex 进阶实战:用 Marvin 实现元数据结构化提取
使用 Pydantic 声明所需字段,明确业务对象结构:pythonname: str = Field(..., description="运动营养补充剂名称")description: str = Field(..., description="成分与作用描述")pros_cons: str = Field(..., description="优缺点对比")Field(...):标记必填字段,确保 LLM 提取完整信息:引导模型理解字段语义,减少提取误差。
2025-06-10 17:39:02
411
原创 LlamaIndex 实体元数据提取深度解析:从模型原理到复杂场景全流程指南
python# 新增「气候指标」实体类型custom_types = [EntityType("CLIMATE_METRIC", label="气候指标")]model_name="your-domain-model" # 加载微调后的模型实体元数据提取的本质,是通过技术手段将文档中的「隐性知识」转化为「显性标签」,让检索系统从「关键词匹配」升级为「语义理解」。在气候报告案例中,这种技术使专家观点查询的准确率从 30% 提升至 92%,充分证明了实体标注的价值。
2025-06-10 17:34:15
825
原创 LlamaIndex 元数据增强实战:如何让文档块拥有「上下文感知力」
作用:提取当前块、前一块、后一块的摘要,构建「上下文时间线」pythonSummaryExtractor(summaries=["prev", "self", "next"], llm=llm) # 提取前/中/后三块摘要效果:每个块的元数据包含三维摘要:plaintextprev_summary: 讨论BERTScore的一对一匹配原理self_summary: 分析MoverScore的优化问题核心next_summary: 对比两者在对话任务中的表现python。
2025-06-10 17:14:18
739
原创 LlamaIndex 深度实战:假设性问题嵌入如何让文档检索精准度跃升
在 LlamaIndex 中,该技术通过实现,核心逻辑是:基于文档块内容生成 3-5 个假设性问题,作为元数据存储并参与检索。文档块内容:“2019 年优步研发成本为 48.36 亿美元”生成问题:优步 2019 年的研发成本是多少?研发成本占优步当年总支出的比例是多少?这些问题形成「潜在查询 - 内容」的映射关系,相当于为每个文档块标注了「可回答的问题标签」。「假设性问题嵌入」的本质是将用户潜在查询提前注入文档元数据。
2025-06-10 17:01:48
947
原创 LlamaIndex 元数据提取深度解析:从基础使用到定制化开发全流程指南
在基于 LlamaIndex 构建智能问答系统时,我们常常面临这样的困境:当文档规模达到数百甚至数千份时,手动标注元数据的效率极低,且难以保证一致性。这时候,LlamaIndex 的元数据自动化提取模块就成为了破局关键。今天我们将深入探讨如何利用 LLMs 与 Metadata Extractor 模块,实现从文本拆分、特征提取到索引构建的全流程自动化,同时解锁定制化开发技巧。LlamaIndex 的元数据提取模块提供了四类高度封装的提取器,每类提取器都针对特定场景设计了丰富的可配置参数:python运行
2025-06-10 16:43:41
837
原创 深入解析 LlamaIndex 核心:Document 与 Node 对象的全流程应用指南
构造函数中初始化python运行text="核心内容",创建后动态修改python运行document.metadata = {"author": "LlamaIndex"} # 覆盖或新增元数据批量自动化注入:利用数据加载器的钩子函数自动提取文件名:python运行).load_data() # 按文件名自动填充metadata通过三个模板属性控制元数据与文本的拼接方式:python运行text="主体内容",metadata_seperator="::", # 键值对分隔符。
2025-06-10 16:33:52
443
原创 LlamaIndex 可观测性实战:从 Span 追踪到事件可视化的全链路解析
在开发 LLM 应用时,我们是否经常遇到这样的困惑:当查询响应出现延迟或结果偏差时,难以快速定位是向量嵌入耗时过长,还是 LLM 调用参数错误?LlamaIndex 的跨度(Span)追踪与事件日志系统正是破解这一难题的关键工具。今天我们将结合最新代码示例,深入解析如何通过 Span 和事件构建可观测性强的智能应用,让每一行代码的行为都清晰可查。Span 是 LlamaIndex 对 “操作” 的抽象(通常对应函数调用),它就像一个 “逻辑容器”,可以包含子 Span 和关联事件,形成完整的任务链路。例如一
2025-06-10 15:37:42
709
原创 LlamaIndex 事件日志深度解析:从全量事件列表到链路可视化的完整指南
LlamaIndex 的事件日志系统不仅是调试工具,更是理解框架运行逻辑的 “地图”。通过本文的全量事件列表,我们能清晰掌握每个模块的观测点;借助与树结构生成方法,可将碎片化事件整合成具有业务价值的分析维度。
2025-06-10 15:33:49
758
原创 深度解析 llama-index API 调用可观测性:从 LLM 提示监控到嵌入效率分析
事件类型对应场景关键监控指标传统 LLM 完成调用(如 GPT-3.5)提示词长度、响应内容聊天式 LLM 调用(如 GPT-4)输入消息总长度、单轮响应内容嵌入模型调用(如 OpenAI Embeddings)处理的文本块数量、嵌入维度python"""自定义模型调用监控处理器"""return "ModelMonitor" # 用于标识处理器类型"""根据事件类型执行不同监控逻辑"""# 监控传统LLM调用:打印提示词长度和响应内容。
2025-06-10 14:53:54
724
原创 零基础入门 llama-index 可观测性:从日志记录到链路监控超详细指南
python# 定义事件处理器(监控摄像头)# 用中文打印事件类型和时间print(f"[监控] {event.class_name.replace('Event', '事件')} 发生于 {event.timestamp}")# 定义跨度处理器(任务管理器)# 接入中央控制室(调度器)比如添加「缓存命中事件」,记录是否从缓存中获取结果:pythoncache_key: str # 缓存键hit: bool # 是否命中# 在代码中触发事件。
2025-06-10 14:48:20
654
原创 深度解析:如何用情感提示激活 RAG 系统的隐藏潜力?
情感类型示例语句设计目标自信度引导“给出 0-1 的自信度评分”强制模型自我评估回答可靠性重要性强调“这对我的工作至关重要”提升模型对问题的关注度确定性要求“你最好确保回答准确”强化事实校验逻辑复合刺激组合前三类语句模拟真实场景中的复杂情感压力复合情感可能突破单一模式局限:通过组合 “任务重要性 + 推理要求 + 交互约束”,可在复杂场景中提升模型表现。情感不是万能优化剂:对于简单任务,过度设计提示可能适得其反。数据是决策基础。
2025-06-10 12:16:17
728
原创 深入 LlamaIndex 高级模块:提示访问与自定义实战指南
如果默认提示不符合需求,我们可以用方法轻松替换。例如,将总结提示改为莎士比亚风格:python"Answer: "})执行查询后,你会发现回答以十四行诗的韵律呈现,这就是自定义提示的魔力。
2025-06-10 12:02:21
800
原创 手把手教你定制LlamaIndex聊天提示词:让模型告别“无上下文不回答“困境
通过今天的实战,我们学会了如何用 LlamaIndex 的提示词定制功能,让模型在严格遵守规则的同时,具备更灵活的应答能力。好的智能系统,应该在 "规则性" 与 "人性化" 之间找到平衡。
2025-06-10 11:50:10
678
原创 LlamaIndex提示词定制实战:让模型在上下文不足时也能智能回答
通过今天的实战,我们学会了如何利用 LlamaIndex 的提示模板定制功能,让模型在上下文不足时也能给出智能回答。核心步骤就是定义合适的,然后通过应用到查询引擎中。这种方法不仅提升了用户体验,还让模型的能力得到了更充分的发挥。
2025-06-10 11:43:40
553
原创 解锁 LlamaIndex 多模态交互:用 RichPromptTemplate 构建动态提示模板
RichPromptTemplate 最基础的能力是通过{{ }}语法注入动态变量。相比传统的 f-string 模板,它使用双括号避免了与 Python 原生字符串的冲突,同时支持更复杂的表达式。python运行# 基础问候模板greeting_prompt = RichPromptTemplate("你好,{{ name }}!今天想了解什么内容?")# 格式化为文本提示print(greeting_prompt.format(name="小明")) # 输出:你好,小明!今天想了解什么内容。
2025-06-09 17:58:28
978
原创 LlamaIndex 高级提示功能实战:从动态模板到智能少样本的进阶之路
python运行# 第三方模板使用`my_context`和`my_query`Answer:"""# 建立变量映射# 初始化模板时传入映射# 直接使用LlamaIndex标准变量名调用context_str="Llama 2-Chat优化对话场景",从函数驱动的动态处理,到数据驱动的少样本学习,LlamaIndex 的高级提示功能让我们跳出了「静态模板」的限制。通过组合使用这些技术,我们不仅能提升开发效率,更能让模型在复杂场景中表现得更加智能和灵活。
2025-06-09 17:51:16
771
原创 深度解析 LlamaIndex 提示词体系:从 Jinja 模板到自定义逻辑的全场景实战
场景:构建包含图片和文本的问答提示python运行你需要根据提供的图片和文本信息回答问题。图片:{{ image_path | image }} <!-- 过滤器标记图片内容 -->文本:{{ text }}问题:如何理解上述内容?""")# 调用示例("chart.png", "2023年销售额增长趋势"),("summary.txt", "Q3同比增长15%")关键点块明确消息角色,适配聊天模型的多轮对话逻辑| image过滤器帮助模型识别图片路径,支持未来多模态接口扩展。
2025-06-09 17:39:22
765
空空如也
关于cordova混合开发的问题
2017-03-20
Struts2+hirbernate 结合出错问题
2016-10-20
关于ajax接受数据以及更新数据的问题
2016-10-01
怎么将上传到服务器上的图片读出来
2016-09-30
eclipseJAVAEE中的jsp问题
2016-09-14
TA创建的收藏夹 TA关注的收藏夹
TA关注的人