题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1394
题目大意: 给出N个数,这些数可以把后面的删掉然后放到最前面形成新的序列
可得到的N种情况,求出这N种情况哪种的逆序数最小
解题思路: 先求出第一个序列的逆序数,然后用很巧妙的办法求下一个序列的逆序数,直到全部求出
序列 4 5 2 1 3 6 ,此序列的逆序数为7,它等到的下一个序列为 5 2 1 3 6 4
看这个新序列的产生过程,首部删除4,尾部添加4
删除4,必然会使得这个序列的逆序数减少(4-1)个,因为4前面必定有4-1个数小于4
添加4,必然会使得这个序列的逆序数增加(6-4)个,因为4后面必定有6-4个数大于4
由此推出公式,假设移动的数为m,序列的逆序数=上一序列逆序数-(m-1)+(N-m)
由于给出的序列不是顺序的,所以先要离散化出来
-
- #include <stdio.h>
- #include <string.h>
- #include <stdlib.h>
- #include <algorithm>
- using namespace std;
- #define MAX 5100
- #define INF 0x3f3f3f3f
- #define MID(a,b) (a+b)>>1
- #define R(a) (a<<1|1)
- #define L(a) a<<1
- typedef struct {
- int num,left,right;
- }Node;
- typedef struct {
- int num,y;
- }Nodes;
- Nodes ans[MAX];
- Node Tree[MAX<<2];
- int n;
-
- bool cmp(Nodes a,Nodes b)
- {
- return a.num>b.num?0:1;
- }
-
- bool cmp2(Nodes a,Nodes b)
- {
- return a.y>b.y?0:1;
- }
-
- void Build(int t,int l,int r)
- {
- int mid;
- Tree[t].left=l,Tree[t].right=r;
- if(Tree[t].left==Tree[t].right)
- {
- Tree[t].num=0;
- return ;
- }
- mid=MID(Tree[t].left,Tree[t].right);
- Build(L(t),l,mid);
- Build(R(t),mid+1,r);
- }
-
- void Insert(int t,int l,int r,int x)
- {
- int mid;
- if(Tree[t].left==l&&Tree[t].right==r)
- {
- Tree[t].num+=x;
- return ;
- }
- mid=MID(Tree[t].left,Tree[t].right);
- if(l>mid)
- {
- Insert(R(t),l,r,x);
- }
- else if(r<=mid)
- {
- Insert(L(t),l,r,x);
- }
- else
- {
- Insert(L(t),l,mid,x);
- Insert(R(t),mid+1,r,x);
- }
- Tree[t].num=Tree[L(t)].num+Tree[R(t)].num;
- }
-
- int Query(int t,int l,int r)
- {
- int mid;
- if(Tree[t].left==l&&Tree[t].right==r)
- return Tree[t].num;
- mid=MID(Tree[t].left,Tree[t].right);
- if(l>mid)
- {
- return Query(R(t),l,r);
- }
- else if(r<=mid)
- {
- return Query(L(t),l,r);
- }
- else
- {
- return Query(L(t),l,mid)+Query(R(t),mid+1,r);
- }
- }
-
- int main()
- {
- int a,n,i,t,min;
- long long int k;
- while(scanf("%d",&n)!=EOF)
- {
- memset(Tree,0,sizeof(Tree));
- Build(1,1,n);
- for(i=1;i<=n;i++)
- {
- scanf("%d",&ans[i].num);
- ans[i].y=i;
- }
- sort(ans+1,ans+1+n,cmp);
- for(i=1;i<=n;i++)
- ans[i].num=i;
- sort(ans+1,ans+1+n,cmp2);
- for(i=1,k=0;i<=n;i++)
- {
- a=ans[i].num;
- Insert(1,a,a,1);
- k=k+(i-Query(1,1,a));
- }
- min=INF;
- for(i=1;i<=n;i++)
- {
- k=k-(ans[i].num-1)+(n-ans[i].num);
- if(min>k)
- min=k;
- }
- printf("%d\n",min);
- }
- return 0;
- }