hdu 1394 Minimum Inversion Number(线段树求最小逆序数)

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1394

题目大意:   给出N个数,这些数可以把后面的删掉然后放到最前面形成新的序列

                 可得到的N种情况,求出这N种情况哪种的逆序数最小

解题思路:   先求出第一个序列的逆序数,然后用很巧妙的办法求下一个序列的逆序数,直到全部求出

                 序列 4 5 2 1 3 6 ,此序列的逆序数为7,它等到的下一个序列为 5 2 1 3 6 4

                 看这个新序列的产生过程,首部删除4,尾部添加4

                 删除4,必然会使得这个序列的逆序数减少(4-1)个,因为4前面必定有4-1个数小于4

                 添加4,必然会使得这个序列的逆序数增加(6-4)个,因为4后面必定有6-4个数大于4

                 由此推出公式,假设移动的数为m,序列的逆序数=上一序列逆序数-(m-1)+(N-m)

                 由于给出的序列不是顺序的,所以先要离散化出来

[cpp]  view plain  copy
  1. // 线段树  
  2. #include <stdio.h>  
  3. #include <string.h>  
  4. #include <stdlib.h>  
  5. #include <algorithm>  
  6. using namespace std;  
  7. #define MAX 5100  
  8. #define INF 0x3f3f3f3f  
  9. #define MID(a,b) (a+b)>>1  
  10. #define R(a) (a<<1|1)  
  11. #define L(a) a<<1  
  12. typedef struct {  
  13.     int num,left,right;  
  14. }Node;  
  15. typedef struct {  
  16.     int num,y;  
  17. }Nodes;  
  18. Nodes ans[MAX];  
  19. Node Tree[MAX<<2];  
  20. int n;  
  21.   
  22. bool cmp(Nodes a,Nodes b)  
  23. {  
  24.     return a.num>b.num?0:1;  
  25. }  
  26.   
  27. bool cmp2(Nodes a,Nodes b)  
  28. {  
  29.     return a.y>b.y?0:1;  
  30. }  
  31.   
  32. void Build(int t,int l,int r)         //以1为根节点建立线段树    
  33. {    
  34.     int mid;    
  35.     Tree[t].left=l,Tree[t].right=r;    
  36.     if(Tree[t].left==Tree[t].right)    
  37.     {    
  38.         Tree[t].num=0;    
  39.         return ;    
  40.     }    
  41.     mid=MID(Tree[t].left,Tree[t].right);    
  42.     Build(L(t),l,mid);    
  43.     Build(R(t),mid+1,r);    
  44. }    
  45.     
  46. void Insert(int t,int l,int r,int x)     //向以1为根节点的区间[l,r]插入数字1    
  47. {    
  48.     int mid;    
  49.     if(Tree[t].left==l&&Tree[t].right==r)    
  50.     {    
  51.         Tree[t].num+=x;    
  52.         return ;    
  53.     }    
  54.     mid=MID(Tree[t].left,Tree[t].right);    
  55.     if(l>mid)    
  56.     {    
  57.         Insert(R(t),l,r,x);    
  58.     }    
  59.     else if(r<=mid)    
  60.     {    
  61.         Insert(L(t),l,r,x);    
  62.     }    
  63.     else    
  64.     {    
  65.         Insert(L(t),l,mid,x);    
  66.         Insert(R(t),mid+1,r,x);    
  67.     }    
  68.     Tree[t].num=Tree[L(t)].num+Tree[R(t)].num;    
  69. }    
  70.     
  71. int Query(int t,int l,int r)           //查询以1为根节点,区间[l,r]的和    
  72. {    
  73.     int mid;    
  74.     if(Tree[t].left==l&&Tree[t].right==r)    
  75.         return Tree[t].num;    
  76.     mid=MID(Tree[t].left,Tree[t].right);    
  77.     if(l>mid)    
  78.     {    
  79.         return Query(R(t),l,r);    
  80.     }    
  81.     else if(r<=mid)    
  82.     {    
  83.         return Query(L(t),l,r);    
  84.     }    
  85.     else    
  86.     {    
  87.         return Query(L(t),l,mid)+Query(R(t),mid+1,r);    
  88.     }    
  89. }    
  90.   
  91. int main()  
  92. {  
  93.     int a,n,i,t,min;  
  94.     long long int k;  
  95.     while(scanf("%d",&n)!=EOF)  
  96.     {  
  97.         memset(Tree,0,sizeof(Tree)); //初始化  
  98.         Build(1,1,n);                //建立线段树  
  99.         for(i=1;i<=n;i++)  
  100.         {  
  101.             scanf("%d",&ans[i].num);  
  102.             ans[i].y=i;  
  103.         }  
  104.         sort(ans+1,ans+1+n,cmp);     //离散化  
  105.         for(i=1;i<=n;i++)            //离散化  
  106.             ans[i].num=i;  
  107.         sort(ans+1,ans+1+n,cmp2);  
  108.         for(i=1,k=0;i<=n;i++)  
  109.         {  
  110.             a=ans[i].num;  
  111.             Insert(1,a,a,1);  
  112.             k=k+(i-Query(1,1,a));    //求出第一个序列的逆序数  
  113.         }  
  114.         min=INF;  
  115.         for(i=1;i<=n;i++)            //O(n)求出所有序列的逆序数,并且取最小的  
  116.         {  
  117.             k=k-(ans[i].num-1)+(n-ans[i].num);  
  118.             if(min>k)  
  119.                min=k;  
  120.          }  
  121.         printf("%d\n",min);  
  122.     }  
  123.     return 0;  
  124. }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值