自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(86)
  • 收藏
  • 关注

转载 《机器学习的随机矩阵方法》

本书介绍了用于机器学习应用的随机矩阵的统一理论,提供了利用集中度和普遍性现象的大维数据视觉。这使得对现实世界机器学习算法中发挥作用的核心机制的精确理解和可能的改进成为可能。本书首先全面介绍了随机矩阵的理论基础知识,它为广泛的应用提供了支持,从支持向量机到半监督学习、无监督谱聚类和图方法,再到神经网络和深度学习. 对于每个应用程序,作者讨论了问题的小维度与大维度直觉,随后作者:对结果性能和可能的改进进行系统随机矩阵分析。第 1 版(2022 年 10 月 31 日)精装版 ‏ : ‎ 408 页。...

2022-08-04 18:07:49 96

原创 《使用C ++的数据结构和算法》

使用C ++的数据结构和算法:实用实现作者:Sachi Nandan Mohanty和Pabitra Kumar Tripathy出版社Finelybook出版社:Wiley-Scrive...

2021-02-13 12:43:35 75

原创 《使用Python发明自己的电脑游戏:第二版》

使用Python发明自己的计算机游戏:第二版作者:迈克尔·大卫语言:英语出版日期:2020-12-10ISBN-10书号:B08QDJRL6Q作者的话:我写本书的动机来自我在当今文学中...

2021-01-10 22:25:17 119

原创 《数据挖掘:实用的机器学习工具和技术,第4版》

内容简介:描述数据挖掘:实用的机器学习工具和技术,第四版,提供了机器学习概念的全面基础,并提供了在实际数据挖掘情况下应用这些工具和技术的实用建议。这份备受期待的关于数据挖掘和机器学习的最...

2021-01-04 22:45:16 342

原创 《从C ++开始》第9版(1200页)

从C ++开始,第9版页数:1273页版本:9语言:英语出版商Finelybook出版社:Pearson Education Limited出版日期出版日期:2016-03-03 ISB...

2020-12-31 22:16:48 57

原创 《数据分析》

数据分析作者:Maheshwari页数:272页版本版本:1语言:英语出版商Finelybook出版社:Mc Graw Hill IndiaISBN-10书号:9352604180IS...

2020-12-23 23:18:29 49 1

原创 《预测数据分析的机器学习基础:算法,实例和案例研究》第二版

预测数据分析的机器学习基础:算法,实例和案例研究,第二版作者:John D. Kelleher(作者),Brian Mac Namee(作者),Aoife D'Arcy(作者)出...

2020-12-20 22:57:40 243

原创 计算机核心课程必读书目——《高级数据结构:理论与应用》

高级数据结构:理论和应用第一版作者:Suman Saha,Shailendra Shukla(作者)页数:258页出版商:Finelybook出版社:Chapman and Hall /...

2020-12-14 00:08:34 176

原创 《社会中的数据可视化》PDF

社会中的数据可视化作者:Helen Kennedy和Martin Engebretsen页数:464页ISBN-10:9463722904 ISBN-13:9789463722902尺寸...

2020-12-12 23:04:17 125

原创 初学者的10种Python技巧

使用Python直观易懂的语法,任何人都可以访问令人印象深刻的科学计算功能。Python已成为数据科学和机器学习的标准语言,并且在Stack Overflow的2020开发人员调查中被...

2020-12-08 20:41:11 106

转载 《操作系统概述》- 第六版

操作系统概述作者:简·霍尔科姆(Jane Holcombe)页数:496页ISBN-10:1260096009尺寸:9 x 2 x 11英寸ISBN-13:9781260096002出版社:McGraw-Hill Education;第六版(2019年2月28日)本标题使用大量插图和动手操作来介绍最广泛使用的桌面操作系统(包括Windows,Apple OS X和Linux),为IT领域的成功奠定基础,使学生能够适应不同的工作环境并解决问题。新版本的功能包括有关...

2020-12-04 21:48:56 186

转载 微积分、线性代数、概率论,这里有份超详细的ML数学路线图

大学时期学的数学现在可能派上用场了,机器学习背后的原理涉及许多数学知识。深入挖掘一下,你会发现,线性代数、微积分和概率论等都和机器学习背后的算法息息相关。机器学习算法背后的数学知识你了解吗?在构建模型的过程中,如果想超越其基准性能,那么熟悉基本细节可能会大有帮助,尤其是在想要打破 SOTA 性能时,尤其如此。机器学习背后的原理往往涉及高等数学。例如,随机梯度下降算法建立在多变量微积分和概率论的基础上。因此掌握基础的数学理论对于理解机器学习模型很重要。但如果你是没有数学基础的初学者,这里..

2020-12-04 20:00:39 830

转载 3 本书免费学习数据科学与统计学

免费学习数据科学所需的所有统计信息统计是数据科学家每天使用的一项基本技能。这是数学的分支,它使我们能够收集,描述,解释,可视化并对数据进行推断。数据科学家将使用它进行数据分析,实验设计和统计建模。统计对于机器学习也至关重要。之后我们将升利用统计资料来了解在训练前一个模型的数据。当我们抽取数据样本进行训练和测试时,我们需要采用统计技术来确保公平。在评估模型的性能时,我们需要统计信息来评估预测的可变性并评估准确性。“如果统计数字很无聊,您的数字就是错误的。”爱德华·塔夫特(Edward Tufte

2020-12-03 17:58:25 89

原创 3本书免费学习数据科学与统计学

免费学习数据科学所需的所有统计信息统计是数据科学家每天使用的一项基本技能。这是数学的分支,它使我们能够收集,描述,解释,可视化并对数据进行推断。数据科学家将使用它进行数据分析,实验设计和...

2020-12-03 17:42:20 138

原创 如果不想你被称做掉包侠,那么请有效地学习机器学习算法知识

机器学习远远超出了sklearn中简单的fit和predict方法。背景:现在大家都习惯说掉包侠这个词,尤其是人工智能领域。我的一个朋友就嘲笑我,说:“你这么久学会了什么?只是几个模型,我一周就学会了。”那是他的原话。我只是对他微笑,并询问他学到了什么。他告诉了几种机器学习算法的名称。我问他确切地学到了什么,然后得出了使用Sklearn的拟合(fit)和预测(predict)方法的明显答复,并简要概述了该算法的工作原理。我脸上露出邪恶的笑容,我问他要如何获得最佳参数?模型如何学习最佳..

2020-11-29 11:38:52 326

原创 机器学习中的正则化

正则化是一种有助于避免过拟合的技术,还可以使预测模型更易于理解。训练机器学习模型的主要方面之一是避免过度拟合。如果模型过于拟合,则模型的准确性会较低。发生这种情况是因为您的模型过于努力地...

2020-11-23 17:45:59 115

原创 《机器学习和大数据:概念,算法,工具和应用》

机器学习和大数据:概念,算法,工具和应用作者:Khaleel Ahmad(作者),Khairol Amali Bin Ahmad(作者),Uma N. Dulhare(作者)精装本:54...

2020-11-21 20:56:21 1172 7

原创 神经网络泛化

每当我们训练自己的神经网络时,我们都需要注意称为神经网络的泛化的问题。从本质上讲,这意味着我们的模型在从给定数据中学习以及将所学信息应用到其他方面有多出色。在训练神经网络时,将有一些...

2020-11-21 20:56:21 2098

原创 TensorFlow使用者的福音 – PerceptiLabs – TF的GUI和Visual API(TF的可视化神器)

最近发布的PerceptiLabs 0.11已迅速成为TensorFlow的GUI和可视API。PerceptiLabs基于复杂的可视ML建模编辑器构建,您可以在其中拖放组件并将它们连接...

2020-11-19 17:24:39 550

原创 《应用数据分析–原理和应用》

应用数据分析-原理和应用(River Publisher Finelybook出版社系列信号,图像和语音处理)作者:Johnson I. Agbinya出版日期:2020年Publish...

2020-11-17 17:14:19 192

原创 干货!直观地解释和可视化每个复杂的DataFrame操作

大多数数据科学家可能会赞扬Pandas进行数据准备的能力,但许多人可能无法利用所有这些能力。操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,...

2020-11-17 17:14:19 305

原创 如何修复不平衡的数据集

我们将介绍几种处理不平衡数据集的替代方法,包括带有代码示例的不同重采样和组合方法。分类是最常见的机器学习问题之一。接近任何分类问题的最佳方式是通过分析和探索我们所说的数据集开始Explo...

2020-11-15 23:18:52 343

原创 进阶Python开发(PDF版开源了)

在实际应用程序中使用强大的语言功能本书以基本的Python教程为基础,解释了各种常规未涵盖的Python语言功能。Python的某些强大方面经常使用人为设计的示例进行说明,这些示例仅作为...

2020-11-12 21:54:39 146 1

原创 三千字轻松入门TensorFlow 2

通过使用深度学习实现分类问题的动手演练,如何绘制问题以及如何改善其结果,来了解TensorFlow的最新版本。但是等等...什么是Tensorflow?Tensorflow是Google...

2020-11-11 21:58:17 83

原创 O'Reilly出版社又一经典之作——Python设计模式

Architecture Patterns with Python出版时间:2020.3随着Python的持续流行,项目变得越来越大,越来越复杂。许多Python开发人员都对高级软件设计...

2020-11-10 22:10:16 341 4

原创 SQL和Python中的特征工程:一种混合方法

在了解Pandas之前,我很早就了解SQL,Pandas忠实地模拟SQL的方式使我很感兴趣。通常,SQL是供分析人员使用的,他们将数据压缩为内容丰富的报告,而Python供数据科学家使用...

2020-11-09 20:50:59 157

原创 手把手教你如何在Windows安装Anaconda

本教程介绍了如何在Windows上下载和安装Anaconda。如何测试您的安装;如何解决常见的安装问题;以及安装Anaconda后的操作。Anaconda是一个软件包管理器,一个环境管理...

2020-11-06 20:54:18 2957

原创 轻松使用TensorFlow进行数据增强

当我们没有大量不同的训练数据时,我们该怎么办?这是在TensorFlow中使用数据增强在模型训练期间执行内存中图像转换以帮助克服此数据障碍的快速介绍。图像分类的成功至少在很大程度上受到大...

2020-11-04 17:11:02 280

原创 《用Python进行监督学习》

通过使用Python开发用例,全面了解监督学习算法。您将学习监督学习的概念,Python代码,数据集,最佳实践,常见问题和陷阱的解决方法,以及为结构化以及文本和图像数据集实现算法的实践知...

2020-11-04 17:11:02 213 2

原创 深度神经网络

我们研究了深度神经网络的功能和应用。人脑,其功能及其工作方式为创建神经网络提供了灵感。人工智能和机器学习是AI的子集,在其功能中起着至关重要的作用。当开发人员输入数据并构建机器学习算法时...

2020-11-03 21:46:41 314

原创 《概率深度学习:使用Python,Keras和TensorFlow概率》附下载

文末附PDF及源代码等资料下载链接Probabilistic Deep Learning: With Python, Keras and TensorFlow Probability作者...

2020-10-30 10:24:45 229 2

原创 对抗验证概述

了解如何实施对抗性验证,以建立分类器来确定您的数据是来自训练还是测试集。如果可以这样做,则您的数据有问题,并且对抗验证模型可以帮助您诊断问题。如果您要在Kaggle上研究一些获胜的解决方...

2020-10-30 10:24:45 1116

原创 《概率深度学习:使用Python,Keras和TensorFlow概率》

Probabilistic Deep Learning: With Python, Keras and TensorFlow Probability作者: Oliver Duerr出版日...

2020-10-29 21:50:34 323 2

原创 调包侠的炼丹福利:使用Keras Tuner自动进行超参数调整

使用Keras Tuner进行超参数调整可以将您的分类神经网络网络的准确性提高10%。这篇文章将解释如何使用Keras Tuner和Tensorflow 2.0执行自动超参数调整,以提高...

2020-10-28 20:20:35 1189 3

原创 《统计学习基础:数据挖掘、推理和预测》-斯坦福大学人工智能学科专用教材

本周,我们为您带来Trevor Hastie,Robert Tibshirani和Jerome Friedman撰写的《统计学习的要素》。该统计(和机器)学习领域的开创性著作的第一版最初...

2020-10-28 20:20:35 549 3

原创 可视化数据科学中的概率分布以帮你更好地理解各种分布

在某些分布假设下,某些机器学习模型被设计为最佳工作。因此,了解我们正在使用哪个发行版可以帮助我们确定最适合使用哪些模型。介绍拥有良好的统计背景可能对数据科学家的日常生活大有裨益。每次我们...

2020-10-27 20:25:59 163

原创 手把手教你理解决策树:从概念到应用

全文2.5K字,建议阅读时间5分钟。尽管决策树在机器学习中的使用已经存在了一段时间,但该技术仍然强大且受欢迎。本指南首先提供对该方法的介绍性知识,然后向您展示如何构建决策树,计算重要的分...

2020-10-25 17:04:01 194

原创 对照return讲解yield,这个很重要

只有真正理解了yeild,才能懂以后要讲的生成器、上下文管理器之类的。return精髓理解:返回后函数执行结束yield精髓理解:返回后函数执行暂停return和yield相同之处:都用...

2020-10-24 20:26:34 199

原创 Scikit-Learn中的特征排名与递归特征消除

全文2K字,建议阅读时间5分钟。由于我本人最近正在做特征工程方面的工作,以特征选择和特征降维为主,所以本篇文章为同学们讲解sklearn库中常用的特征选择方法。本文介绍如何使用sciki...

2020-10-23 11:17:23 1471 1

原创 一篇文章加五分钟即可让你轻松上手Pytorch

PyTorch入门关于如何使用PyTorch进行数据分析和推断的实践演练。介绍如今,PyTorch是用于深度学习的增长最快的Python框架之一。实际上,该库最初主要是由研究人员用来创建...

2020-10-21 20:49:43 55

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除