大部分人的讲解都是按照书上原话或者别人的博客,总是能看清表面却看不到内部实现,本文会描述表面,更会针对底层实现进行讲解。
时间轮
kafka中存在大量的延时操作,比如延时生产,延时消费,延时删除等。kafka并没有使用JDK自带的Timer和DelayQuene来实现延时的功能,而是基于时间轮的概念自定义实现了一个用于延时操作的定时器(SystemTimer)。
复杂度
jdk的Timer和DelayQuene的插入和删除的复杂度为O(nlogn)
根据源码分析,Timer底层使用的TaskQueue,内部实现使用的是最小堆
kafka使用的时间轮接近于O(1),不仅仅是kafka采用了时间轮,在 Netty,Akka, Quartz, ZooKeeper 等组件中都存在时间轮的踪影。
时间轮结构
Kafka 中的时间轮( TimingWheel )是 个存储定时任务的环形队列底层采用数组实现,数组中的每个元素可以存放一个定时任务列表( TimerTaskList )。 TimerTaskList是一个环形的双向链表,链表中的每一项表示的都是定时任务项( TimerTaskEntry ),其中封装了真正的定时任务 TimerTask。
如何使用时间轮
若时间轮的tickMs=1ms,wheelSize=20,那么可以计算得出interval为20ms。初始情况下表盘指针currentTime指向时间格0,此时有一个定时为2ms的任务插入进来会存放到时间格为2的TimerTaskList中。随着时间的不断推移,指针currentTime不断向前推进,过了2ms之后,当到达时间格2时,就需要将时间格2所对应的TimeTaskList中的任务做相应的到期操作。此时若又有一个定时为8ms的任务插入进来,则会存放到时间格10中,currentTime再过8ms后会指向时间格10。如果同时有一个定时为19ms的任务插入进来怎么办?新来的TimerTaskEntry会复用原来的TimerTaskList,所以它会插入到原本已经到期的时间格1中。总之,整个时间轮的总体跨度是不变的,随着指针currentTime的不断推进,当前时间轮所能处理的时间段也在不断后移,总体时间范围在currentTime和currentTime+interval之间。
层级时间轮
如果此时有个定时为350ms的任务该如何处理?直接扩充wheelSize的大小么?Kafka中不乏几万甚至几十万毫秒的定时任务,这个wheelSize的扩充没有底线,就算将所有的定时任务的到期时间都设定一个上限,比如100万毫秒,那么这个wheelSize为100万毫秒的时间轮不仅占用很大的内存空间,而且效率也会拉低。Kafka为此引入了层级时间轮的概念,当任务的到期时间超过了当前时间轮所表示的时间范围时,就会尝试添加到上层时间轮中。
该设计的原理源自于钟表,传统钟表就是一个三级时间轮,第一层时间轮tickMs=1s, wheelSize=60,interval=1min,此为秒钟;第二层tickMs=1min,wheelSize=60,interval=1hour,此为分钟;第三层tickMs=1hour,wheelSize为12,interval为12hours,此为时钟。
参考上图,复用之前的案例,第一层的时间轮tickMs=1ms, wheelSize=20, interval=20ms。第二层的时间轮的tickMs为第一层时间轮的interval,即为20ms。每一层时间轮的wheelSize是固定的,都是20,那么第二层的时间轮的总体时间跨度interval为400ms。以此类推,这个400ms也是第三层的tickMs的大小,第三层的时间轮的总体时间跨度为8000ms。
对于之前所说的350ms的定时任务,显然第一层时间轮不能满足条件,所以就升级到第二层时间轮中,最终被插入到第二层时间轮中时间格17所对应的TimerTaskList中。如果此时又有一个定时为450ms的任务,那么显然第二层时间轮也无法满足条件,所以又升级到第三层时间轮中,最终被插入到第三层时间轮中时间格1的TimerTaskList中。注意到在到期时间在[400ms,800ms)区间的多个任务(比如446ms、455ms以及473ms的定时任务)都会被放入到第三层时间轮的时间格1中,时间格1对应的TimerTaskList的超时时间为400ms。随着时间的流逝,当次TimerTaskList到期之时,原本定时为450ms的任务还剩下50ms的时间,还不能执行这个任务的到期操作。这里就有一个时间轮降级的操作,会将这个剩余时间为50ms的定时任务重新提交到层级时间轮中,此时第一层时间轮的总体时间跨度不够,而第二层足够,所以该任务被放到第二层时间轮到期时间为[40ms,60ms)的时间格中。再经历了40ms之后,此时这个任务又被“察觉”到,不过还剩余10ms,还是不能立即执行到期操作。所以还要再有一次时间轮的降级,此任务被添加到第一层时间轮到期时间为[10ms,11ms)的时间格中,之后再经历10ms后,此任务真正到期,最终执行相应的到期操作。
时间轮的推进
Kafka中的定时器借助了JDK中的DelayQueue来协助推进时间轮。具体做法是对于每个使用到的TimerTaskList都会加入到DelayQueue中,“每个使用到的TimerTaskList”特指有非哨兵节点的定时任务项TimerTaskEntry的TimerTaskList。DelayQueue会根据TimerTaskList对应的超时时间expiration来排序,最短expiration的TimerTaskList会被排在DelayQueue的队头。Kafka中会有一个线程来获取DelayQueue中的到期的任务列表,有意思的是这个线程所对应的名称叫做“ExpiredOperationReaper”,可以直译为“过期操作收割机”。当“收割机”线程获取到DelayQueue中的超时的任务列表TimerTaskList之后,既可以根据TimerTaskList的expiration来推进时间轮的时间,也可以就获取到的TimerTaskList执行相应的操作,对立面的TimerTaskEntry该执行过期操作的就执行过期操作,该降级时间轮的就降级时间轮。
文章开头明确指明的DelayQueue不适合Kafka这种高性能要求的定时任务,为何这里还要引入DelayQueue呢?注意对于定时任务项TimerTaskEntry插入和删除操作而言,TimingWheel时间复杂度为O(1),性能高出DelayQueue很多,如果直接将TimerTaskEntry插入DelayQueue中,那么性能显然难以支撑。就算我们根据一定的规则将若干TimerTaskEntry划分到TimerTaskList这个组中,然后再将TimerTaskList插入到DelayQueue中,试想下如果这个TimerTaskList中又要多添加一个TimerTaskEntry该如何处理?对于DelayQueue而言,这类操作显然变得力不从心。
分析到这里可以发现,Kafka中的TimingWheel专门用来执行插入和删除TimerTaskEntry的操作,而DelayQueue专门负责时间推进的任务。再试想一下,DelayQueue中的第一个超时任务列表的expiration为200ms,第二个超时任务为840ms,这里获取DelayQueue的队头只需要O(1)的时间复杂度。如果采用每秒定时推进,那么获取到第一个超时的任务列表时执行的200次推进中有199次属于“空推进”,而获取到第二个超时任务时有需要执行639次“空推进”,这样会无故空耗机器的性能资源,这里采用DelayQueue来辅助以少量空间换时间,从而做到了“精准推进”。Kafka中的定时器真可谓是“知人善用”,用TimingWheel做最擅长的任务添加和删除操作,而用DelayQueue做最擅长的时间推进工作,相辅相成。
内部实现:
在kafka源码中,package:kafka.utils.timer,共包含四个文件,Timer.scala、TimerTask.scala、TimerTaskList.scala、TimingWheel.scala
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package kafka.utils.timer
import java.util.concurrent.{DelayQueue, Executors, ThreadFactory, TimeUnit}
import java.util.concurrent.atomic.AtomicInteger
import java.util.concurrent.locks.ReentrantReadWriteLock
import kafka.utils.threadsafe
import org.apache.kafka.common.utils.Utils
trait Timer {
/**
* Add a new task to this executor. It will be executed after the task's delay
* (beginning from the time of submission)
* @param timerTask the task to add
*/
def add(timerTask: TimerTask): Unit
/**
* Advance the internal clock, executing any tasks whose expiration has been
* reached within the duration of the passed timeout.
* @param timeoutMs
* @return whether or not any tasks were executed
*/
def advanceClock(timeoutMs: Long): Boolean
/**
* Get the number of tasks pending execution
* @return the number of tasks
*/
def size: Int
/**
* Shutdown the timer service, leaving pending tasks unexecuted
*/
def shutdown(): Unit
}
@threadsafe
class SystemTimer(executorName: String,
tickMs: Long = 1,
wheelSize: Int = 20,
startMs: Long = System.currentTimeMillis) extends Timer {
// timeout timer
private[this] val taskExecutor = Executors.newFixedThreadPool(1, new ThreadFactory() {
def newThread(runnable: Runnable): Thread =
Utils.newThread("executor-"+executorName, runnable, false)
})
private[this] val delayQueue = new DelayQueue[TimerTaskList]()
private[this] val taskCounter = new AtomicInteger(0)
private[this] val timingWheel = new TimingWheel(
tickMs = tickMs,
wheelSize = wheelSize,
startMs = startMs,
taskCounter = taskCounter,
delayQueue
)
// Locks used to protect data structures while ticking
private[this] val readWriteLock = new ReentrantReadWriteLock()
private[this] val readLock = readWriteLock.readLock()
private[this] val writeLock = readWriteLock.writeLock()
def add(timerTask: TimerTask): Unit = {
readLock.lock()
try {
addTimerTaskEntry(new TimerTaskEntry(timerTask, timerTask.delayMs + System.currentTimeMillis()))
} finally {
readLock.unlock()
}
}
private def addTimerTaskEntry(timerTaskEntry: TimerTaskEntry): Unit = {
if (!timingWheel.add(timerTaskEntry)) {
// Already expired or cancelled
if (!timerTaskEntry.cancelled)
taskExecutor.submit(timerTaskEntry.timerTask)
}
}
private[this] val reinsert = (timerTaskEntry: TimerTaskEntry) => addTimerTaskEntry(timerTaskEntry)
/*
* Advances the clock if there is an expired bucket. If there isn't any expired bucket when called,
* waits up to timeoutMs before giving up.
*/
def advanceClock(timeoutMs: Long): Boolean = {
var bucket = delayQueue.poll(timeoutMs, TimeUnit.MILLISECONDS)
if (bucket != null) {
writeLock.lock()
try {
while (bucket != null) {
timingWheel.advanceClock(bucket.getExpiration())
bucket.flush(reinsert)
bucket = delayQueue.poll()
}
} finally {
writeLock.unlock()
}
true
} else {
false
}
}
def size: Int = taskCounter.get
override def shutdown() {
taskExecutor.shutdown()
}
}
在这个文件中,有一个类似接口的Timer,声明了他的方法和变量成员,而类SystemTimer实现了Timer,方法描述如下:
add(timerTask: TimerTask):方法是线程安全的,他将timerTask和该timerTask的超时时间(绝对时间),封装成TimerTaskEntry,调用TimingWheel.scala中的add()方法,失败后再判断当前的TimerTaskEntry中的timerTask是和当前对象一致,一致的话说明已经过期但未执行,此处执行该任务。
advanceClock(timeoutMs: Long):该方法也是线程安全的,它先pull()出县一个时间(绝对时间)节点的数据,上锁,调用TimingWheel.scala中的advanceClock()方法将上层,上上层中的时间进行推进,并把当前的bucket重新添加,继续尝试取出当前时间的bucket,知道这个时间点没有bucket终止。
TimerTask.scala
package kafka.utils.timer
trait TimerTask extends Runnable {
val delayMs: Long // timestamp in millisecond
private[this] var timerTaskEntry: TimerTaskEntry = null
def cancel(): Unit = {
synchronized {
if (timerTaskEntry != null) timerTaskEntry.remove()
timerTaskEntry = null
}
}
private[timer] def setTimerTaskEntry(entry: TimerTaskEntry): Unit = {
synchronized {
// if this timerTask is already held by an existing timer task entry,
// we will remove such an entry first.
if (timerTaskEntry != null && timerTaskEntry != entry)
timerTaskEntry.remove()
timerTaskEntry = entry
}
}
private[timer] def getTimerTaskEntry(): TimerTaskEntry = {
timerTaskEntry
}
}
此文件中存在两个内部变量,超时时间delayMs和任务实体timerTaskEntry,
以及拒绝方法,替换任务实体,获取任务实体三个方法。
TimerTaskList.scala
package kafka.utils.timer
import java.util.concurrent.{TimeUnit, Delayed}
import java.util.concurrent.atomic.{AtomicLong, AtomicInteger}
import kafka.utils.{SystemTime, threadsafe}
import scala.math._
@threadsafe
private[timer] class TimerTaskList(taskCounter: AtomicInteger) extends Delayed {
// TimerTaskList forms a doubly linked cyclic list using a dummy root entry
// root.next points to the head
// root.prev points to the tail
private[this] val root = new TimerTaskEntry(null, -1)
root.next = root
root.prev = root
private[this] val expiration = new AtomicLong(-1L)
// Set the bucket's expiration time
// Returns true if the expiration time is changed
def setExpiration(expirationMs: Long): Boolean = {
expiration.getAndSet(expirationMs) != expirationMs
}
// Get the bucket's expiration time
def getExpiration(): Long = {
expiration.get()
}
// Apply the supplied function to each of tasks in this list
def foreach(f: (TimerTask)=>Unit): Unit = {
synchronized {
var entry = root.next
while (entry ne root) {
val nextEntry = entry.next
if (!entry.cancelled) f(entry.timerTask)
entry = nextEntry
}
}
}
// Add a timer task entry to this list
def add(timerTaskEntry: TimerTaskEntry): Unit = {
var done = false
while (!done) {
// Remove the timer task entry if it is already in any other list
// We do this outside of the sync block below to avoid deadlocking.
// We may retry until timerTaskEntry.list becomes null.
timerTaskEntry.remove()
synchronized {
timerTaskEntry.synchronized {
if (timerTaskEntry.list == null) {
// put the timer task entry to the end of the list. (root.prev points to the tail entry)
val tail = root.prev
timerTaskEntry.next = root
timerTaskEntry.prev = tail
timerTaskEntry.list = this
tail.next = timerTaskEntry
root.prev = timerTaskEntry
taskCounter.incrementAndGet()
done = true
}
}
}
}
}
// Remove the specified timer task entry from this list
def remove(timerTaskEntry: TimerTaskEntry): Unit = {
synchronized {
timerTaskEntry.synchronized {
if (timerTaskEntry.list eq this) {
timerTaskEntry.next.prev = timerTaskEntry.prev
timerTaskEntry.prev.next = timerTaskEntry.next
timerTaskEntry.next = null
timerTaskEntry.prev = null
timerTaskEntry.list = null
taskCounter.decrementAndGet()
}
}
}
}
// Remove all task entries and apply the supplied function to each of them
def flush(f: (TimerTaskEntry)=>Unit): Unit = {
synchronized {
var head = root.next
while (head ne root) {
remove(head)
f(head)
head = root.next
}
expiration.set(-1L)
}
}
def getDelay(unit: TimeUnit): Long = {
unit.convert(max(getExpiration - SystemTime.milliseconds, 0), TimeUnit.MILLISECONDS)
}
def compareTo(d: Delayed): Int = {
val other = d.asInstanceOf[TimerTaskList]
if(getExpiration < other.getExpiration) -1
else if(getExpiration > other.getExpiration) 1
else 0
}
}
private[timer] class TimerTaskEntry(val timerTask: TimerTask, val expirationMs: Long) extends Ordered[TimerTaskEntry] {
@volatile
var list: TimerTaskList = null
var next: TimerTaskEntry = null
var prev: TimerTaskEntry = null
// if this timerTask is already held by an existing timer task entry,
// setTimerTaskEntry will remove it.
if (timerTask != null) timerTask.setTimerTaskEntry(this)
def cancelled: Boolean = {
timerTask.getTimerTaskEntry != this
}
def remove(): Unit = {
var currentList = list
// If remove is called when another thread is moving the entry from a task entry list to another,
// this may fail to remove the entry due to the change of value of list. Thus, we retry until the list becomes null.
// In a rare case, this thread sees null and exits the loop, but the other thread insert the entry to another list later.
while (currentList != null) {
currentList.remove(this)
currentList = list
}
}
override def compare(that: TimerTaskEntry): Int = {
this.expirationMs compare that.expirationMs
}
}
代码说明taskList是一个双向链表,里面有设置超时时间setExpiration(expirationMs: Long),获取超时时间getExpiration(),整体过滤删除taskList里面的过期任务def foreach(f: (TimerTask)=>Unit),添加任务add(timerTaskEntry: TimerTaskEntry),以及删除一个任务remove(timerTaskEntry: TimerTaskEntry),删除所有的任务条,并将每个任务条执行指定的方法
def flush(f:(TimerTaskEntry)=>Unit),
TimingWheel.scala
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package kafka.utils.timer
import kafka.utils.nonthreadsafe
import java.util.concurrent.DelayQueue
import java.util.concurrent.atomic.AtomicInteger
/*
* Hierarchical Timing Wheels
*
* A simple timing wheel is a circular list of buckets of timer tasks. Let u be the time unit.
* A timing wheel with size n has n buckets and can hold timer tasks in n * u time interval.
* Each bucket holds timer tasks that fall into the corresponding time range. At the beginning,
* the first bucket holds tasks for [0, u), the second bucket holds tasks for [u, 2u), …,
* the n-th bucket for [u * (n -1), u * n). Every interval of time unit u, the timer ticks and
* moved to the next bucket then expire all timer tasks in it. So, the timer never insert a task
* into the bucket for the current time since it is already expired. The timer immediately runs
* the expired task. The emptied bucket is then available for the next round, so if the current
* bucket is for the time t, it becomes the bucket for [t + u * n, t + (n + 1) * u) after a tick.
* A timing wheel has O(1) cost for insert/delete (start-timer/stop-timer) whereas priority queue
* based timers, such as java.util.concurrent.DelayQueue and java.util.Timer, have O(log n)
* insert/delete cost.
*
* A major drawback of a simple timing wheel is that it assumes that a timer request is within
* the time interval of n * u from the current time. If a timer request is out of this interval,
* it is an overflow. A hierarchical timing wheel deals with such overflows. It is a hierarchically
* organized timing wheels. The lowest level has the finest time resolution. As moving up the
* hierarchy, time resolutions become coarser. If the resolution of a wheel at one level is u and
* the size is n, the resolution of the next level should be n * u. At each level overflows are
* delegated to the wheel in one level higher. When the wheel in the higher level ticks, it reinsert
* timer tasks to the lower level. An overflow wheel can be created on-demand. When a bucket in an
* overflow bucket expires, all tasks in it are reinserted into the timer recursively. The tasks
* are then moved to the finer grain wheels or be executed. The insert (start-timer) cost is O(m)
* where m is the number of wheels, which is usually very small compared to the number of requests
* in the system, and the delete (stop-timer) cost is still O(1).
*
* Example
* Let's say that u is 1 and n is 3. If the start time is c,
* then the buckets at different levels are:
*
* level buckets
* 1 [c,c] [c+1,c+1] [c+2,c+2]
* 2 [c,c+2] [c+3,c+5] [c+6,c+8]
* 3 [c,c+8] [c+9,c+17] [c+18,c+26]
*
* The bucket expiration is at the time of bucket beginning.
* So at time = c+1, buckets [c,c], [c,c+2] and [c,c+8] are expired.
* Level 1's clock moves to c+1, and [c+3,c+3] is created.
* Level 2 and level3's clock stay at c since their clocks move in unit of 3 and 9, respectively.
* So, no new buckets are created in level 2 and 3.
*
* Note that bucket [c,c+2] in level 2 won't receive any task since that range is already covered in level 1.
* The same is true for the bucket [c,c+8] in level 3 since its range is covered in level 2.
* This is a bit wasteful, but simplifies the implementation.
*
* 1 [c+1,c+1] [c+2,c+2] [c+3,c+3]
* 2 [c,c+2] [c+3,c+5] [c+6,c+8]
* 3 [c,c+8] [c+9,c+17] [c+18,c+26]
*
* At time = c+2, [c+1,c+1] is newly expired.
* Level 1 moves to c+2, and [c+4,c+4] is created,
*
* 1 [c+2,c+2] [c+3,c+3] [c+4,c+4]
* 2 [c,c+2] [c+3,c+5] [c+6,c+8]
* 3 [c,c+8] [c+9,c+17] [c+18,c+18]
*
* At time = c+3, [c+2,c+2] is newly expired.
* Level 2 moves to c+3, and [c+5,c+5] and [c+9,c+11] are created.
* Level 3 stay at c.
*
* 1 [c+3,c+3] [c+4,c+4] [c+5,c+5]
* 2 [c+3,c+5] [c+6,c+8] [c+9,c+11]
* 3 [c,c+8] [c+9,c+17] [c+8,c+11]
*
* The hierarchical timing wheels works especially well when operations are completed before they time out.
* Even when everything times out, it still has advantageous when there are many items in the timer.
* Its insert cost (including reinsert) and delete cost are O(m) and O(1), respectively while priority
* queue based timers takes O(log N) for both insert and delete where N is the number of items in the queue.
*
* This class is not thread-safe. There should not be any add calls while advanceClock is executing.
* It is caller's responsibility to enforce it. Simultaneous add calls are thread-safe.
*/
@nonthreadsafe
private[timer] class TimingWheel(tickMs: Long, wheelSize: Int, startMs: Long, taskCounter: AtomicInteger, queue: DelayQueue[TimerTaskList]) {
private[this] val interval = tickMs * wheelSize
private[this] val buckets = Array.tabulate[TimerTaskList](wheelSize) { _ => new TimerTaskList(taskCounter) }
private[this] var currentTime = startMs - (startMs % tickMs) // rounding down to multiple of tickMs
// overflowWheel can potentially be updated and read by two concurrent threads through add().
// Therefore, it needs to be volatile due to the issue of Double-Checked Locking pattern with JVM
@volatile private[this] var overflowWheel: TimingWheel = null
private[this] def addOverflowWheel(): Unit = {
synchronized {
if (overflowWheel == null) {
overflowWheel = new TimingWheel(
tickMs = interval,
wheelSize = wheelSize,
startMs = currentTime,
taskCounter = taskCounter,
queue
)
}
}
}
def add(timerTaskEntry: TimerTaskEntry): Boolean = {
val expiration = timerTaskEntry.expirationMs
if (timerTaskEntry.cancelled) {
// Cancelled
false
} else if (expiration < currentTime + tickMs) {
// Already expired
false
} else if (expiration < currentTime + interval) {
// Put in its own bucket
val virtualId = expiration / tickMs
val bucket = buckets((virtualId % wheelSize.toLong).toInt)
bucket.add(timerTaskEntry)
// Set the bucket expiration time
if (bucket.setExpiration(virtualId * tickMs)) {
// The bucket needs to be enqueued because it was an expired bucket
// We only need to enqueue the bucket when its expiration time has changed, i.e. the wheel has advanced
// and the previous buckets gets reused; further calls to set the expiration within the same wheel cycle
// will pass in the same value and hence return false, thus the bucket with the same expiration will not
// be enqueued multiple times.
queue.offer(bucket)
}
true
} else {
// Out of the interval. Put it into the parent timer
if (overflowWheel == null) addOverflowWheel()
overflowWheel.add(timerTaskEntry)
}
}
// Try to advance the clock
def advanceClock(timeMs: Long): Unit = {
if (timeMs >= currentTime + tickMs) {
currentTime = timeMs - (timeMs % tickMs)
// Try to advance the clock of the overflow wheel if present
if (overflowWheel != null) overflowWheel.advanceClock(currentTime)
}
}
}
advanceClock()方法是层层时间轮的指针推进
add(timerTaskEntry: TimerTaskEntry):取出当前任务的超时时间,如果任务已经被执行,则返回;如果任务已超时但是未被执行但是已经超时,则执行该任务;如果未到时间,超时时间取余,然后在取模,找到对应位置的bucket,将任务放入到这个bucket,并设置这个bucket的超时时间,超时时间设置成功后将bucket发去delayQuene.
注:
1、每一个时间轮为一个固定长度的数组,数组中的每一个bucket都会放到delayQuene中,每个bucket中有一个taskList,taskList中存在任务实体。
2、每次pull()出的数据,都会判断是否已经执行过,是否已经超时,都不满足的话则执行重新放置,放置的位置为下一层级时间轮的某个位置,为了防止该位置是失效的,会重新设置该位置的超时时间,并在此放回delayQuene。
重新设置该位置的超时时间:
// Set the bucket's expiration time
// Returns true if the expiration time is changed
def setExpiration(expirationMs: Long): Boolean = {
expiration.getAndSet(expirationMs) != expirationMs
}
先取出bucket的超时时间,如果和当前时间一致,则不会重新设置,否则冲洗设置超时时间。