开边界设置1:仅生成潮汐以及潮汐和平均流量的开放边界强迫

开放边界设置

这里的大多数指令都依赖于FVCOM MATLAB工具箱(fvcom-toolbox)。为了在FVCOM中使用平均流量函数,必须使用make.inc中启用的平均流量标志重新编译FVCOM(从2013/02/26开始,这是FLAG_18 = -DMEAN_FLOW)。

1. 仅潮汐(光谱或表面高程)

使用MATLAB fvcom-toolbox生成边界强制的过程如下:

  • 读入SMS网格(read_sms_mesh)。
  • 提取开放边界节点(add_obc_nodes_list),为的参数中的ObcType分配值1 add_obc_nodes_list。有关ObcType选项,请参见FVCOM手册中的表6.1。
  • 使用保存打开边界节点文件write_FVCOM_obc

对于频谱涨潮:

  • 提取开放边界位置处的潮汐谐波振幅和相位(Mobj.read_obc_nodes用于识别边界处的节点)。TPXO和POLPRED已成功用于提取所需的值。将潮汐振幅和相位保存到Mobj.obc_amp和中,Mobj.obc_phase然后用于write_FVCOM_spectide输出到netCDF。

对于边界处的表面高程:

  • 使用Mobj.read_obc_nodes来识别开放的边界节点,使用TPXO工具tmd_tide_pred来生成时间序列的每个节点,保存到Mobj.surfaceElevationMobj.el_time与写出write_FVCOM_elevtide

&NML_OPEN_BOUNDARY_CONTROL名称列表的部分中,设置以下值:

    OBC_ON                     = T,
    OBC_NODE_LIST_FILE         = 'casename_obc.dat',
    OBC_ELEVATION_FORCING_ON   = T,
    OBC_ELEVATION_FILE         = 'casename_tide.nc',

其中 casename_tide.nc频谱或表面海拔潮汐的netCDF

2. 潮汐和平均流量

潮汐方面与上面的纯潮汐情况相似,但对于平均流量而言,变得更加复杂。

  1. 读入SMS网格(read_sms_mesh)。
  2. 提取开放边界节点(add_obc_nodes_list),为的参数中的ObcType赋值为2 add_obc_nodes_list(在Beardsley和Haidvogel(1981)之后被“钳制”)。有关ObcType选项,请参见FVCOM手册中的表6.1。
  3. 读取sigma坐标(用于read_sigma加载sigma.dat文件)。
  4. 用开放边界(find_boundary_elements)上的面识别元素。
  5. 在开放边界元素的质心处生成边界平均流量值。对于各种输出文件,我们需要u和v以及每个边界节点位置处的深度平均速度。get_POLCOMS_meanflow使用PML POLCOMS-ERSEM NetCDF文件将平均流插值到FVCOM开放边界元素和垂直网格。速度数据应该被保存在Mobj.velocity尺寸[nElements,n时间]和在U和V分量的Mobj.meanflow_uMobj.meanflow_v作为大小[nElements,nSiglay,n时间]的阵列。
  6. 可以使用来将开放边界节点处的深度平均速度数据写入netCDF write_FVCOM_meanflow。生成的NetCDF文件包括深度比例因子(MFDIST)以及平均流量(DMFQDIS)。
  7. 除了netCDF文件之外,FVCOM还具有许多硬编码的文件mod_obcs2.F,对于平均流量条件,还必须将其生成。为此,运行write_FVCOM_meanflow_ascii,提供与用于创建netCDF文件相同的速度数组(例如Mobj.velocityMobj.meanflow_uMobj.meanflow_v从POLCOMS数据生成)。

&NML_OPEN_BOUNDARY_CONTROL名称列表的部分中,设置以下值:

    OBC_ON                     = T,
    OBC_NODE_LIST_FILE         = 'casename_obc.dat',
    OBC_ELEVATION_FORCING_ON   = T,
    OBC_ELEVATION_FILE         = 'casename_spectide.nc',
    OBC_MEANFLOW               = T,
    OBC_MEANFLOW_FILE          = 'casename_mf.nc',

3. 多个开放边界

的维度Mobj.surfaceElevation必须为[nObc_nodes, nTime],其中nObc_nodes是用户指定的(OBC_TYPE=1)或任何其他开放边界类型的所有开放边界的节点总数,并且nTime是时间步的总数。因此,例如,在一个恒定宽度为11个节点的简单通道的情况下,上游端由用户指定开放边界,下游端封闭,则的大小Mobj.surfaceElevaton应为11 by nTimecasename_obc.dat文件将读取为:

  OBC Node Number = 11
  1 n1 1
  2 n2 1
  ...

niOBC节点的节点ID 在哪里i。如果现在将通道的下游端更改为重力波辐射开放边界(OBC_TYPE=5),而上游端仍是用户指定的开放边界,则casename_obc.dat文件现在将读取:

  OBC Node Number = 22
  1 n1 1
  2 n2 1
  ...
  12 n12 5
  13 n13 5
  ...

现在Mobj.surfaceElevationnTime即使用户未指定新的开放边界,的尺寸也必须为22 。因此,在此示例中,附加空间Mobj.surfaceElevation可能用零填充,但尺寸必须为,[nObc_nodes, nTime]否则FVCOM会导致致命错误。

平均流量注意事项

FVCOM的平均流量部分是FVCOM 2.7代码库中的残差。因此,存在一些粗糙的边缘。

首先,读入的文件mod_obcs2.F在源中被硬编码:

201      CALL FOPEN(INMF,   TRIM(INPUT_DIR)//TRIM(CASENAME)//'_meanflow.dat'  ,"cfr")
202      CALL FOPEN(INTCELL,TRIM(INPUT_DIR)//TRIM(CASENAME)//'_tide_cell.dat' ,"cfr")
203      CALL FOPEN(INTNODE,TRIM(INPUT_DIR)//TRIM(CASENAME)//'_tide_node.dat' ,"cfr")
204      CALL FOPEN(INTELEL,TRIM(INPUT_DIR)//TRIM(CASENAME)//'_tide_el.dat'   ,"cfr")
205      CALL FOPEN(INTUV,  TRIM(INPUT_DIR)//TRIM(CASENAME)//'_tide_uv.dat'   ,"cfr")

它们的格式相对简单(请参阅print_vals.Fmod_obcs2.F),概述如下。

casename_meanflow.dat

  n
  belID(1)
  belID(2)
  ...
  belID(m)
  1 mfdist(1, 1) mfdist(1, 2) ... mfdist(1, z)
  2 mfdist(2, 1) mfdist(2, 2) ... mfdist(2, z)
  ...
  m mfdist(m, 1) mfdist(m, 2) ... mfdist(m, z)
  tt
  t(0)
  dmfqdis(1, 1) dmfqdis(1, 2) ... dmfqdis(1, m)
  t(1)
  dmfqdis(2, 2) dmfqdis(2, 2) ... dmfqdis(2, m)
  ...
  t(n-1)
  dmfqdis(tt, 1) dmfqdis(tt, 2) ... dmfqdis(tt, m)

其中m是边界元素的数量,belID是边界元素ID,mfdist是平均流量的垂直分布,z是垂直层的数量,dmfqdis是平均流量,t是时间步数(不是时间),tt是时间步长。

casename_tide_el.dat

  tt(1) elev(1, 1) elev(1, 2) ... elev(1, m)
  tt(2) elev(2, 1) elev(2, 2) ... elev(2, m)
  ...
  tt(t) elev(t, 1) elev(t, 2) ... elev(t, m)

其中tt是自模型开始以来的时间,以秒t为单位,是时间步长,m是边界节点的数量,elev是开放边界节点的表面高程。

casename_tide_node.dat

  n
  bndID(1)
  bndID(2)
  ...
  bndID(n)

其中n是边界节点的数量,bndID是边界节点ID。

casename_tide_cell.dat

  e
  belID(1)
  belID(2)
  ...
  belID(e)

其中e是边界元素的数量,belID是边界元素ID。

casename_tide_uv.dat

tt(1) ubar(1, 1) ubar(1, 2) ... ubar(1, m)
tt(1) vbar(1, 1) vbar(1, 2) ... vbar(1, m)
tt(1) u(1, 1, 1) u(1, 1, 2) ... u(1, 1, m)
tt(1) v(1, 1, 1) v(1, 1, 2) ... v(1, 1, m)
tt(1) u(1, 2, 1) u(1, 2, 2) ... u(1, 2, m)
tt(1) v(1, 2, 1) v(1, 2, 2) ... v(1, 2, m)
...
tt(1) u(1, z, 1) u(1, z, 2) ... u(1, z, m)
tt(1) v(1, z, 1) v(1, z, 2) ... v(1, z, m)
tt(2) ubar(2, 1) ubar(2, 2) ... ubar(2, m)
tt(2) vbar(2, 1) vbar(2, 2) ... vbar(2, m)
tt(2) u(2, 1, 1) u(2, 1, 2) ... u(2, 1, m)
tt(2) v(2, 1, 1) v(2, 1, 2) ... v(2, 1, m)
tt(2) u(2, 2, 1) u(2, 2, 2) ... u(2, 2, m)
tt(2) v(2, 2, 1) v(2, 2, 2) ... v(2, 2, m)
...
tt(2) u(2, z, 1) u(2, z, 2) ... u(2, z, m)
tt(2) v(2, z, 1) v(2, z, 2) ... v(2, z, m)
...
...
tt(t) ubar(t, 1) ubar(t, 2) ... ubar(t, m)
tt(t) vbar(t, 1) vbar(t, 2) ... vbar(t, m)
tt(t) u(t, 1, 1) u(t, 1, 2) ... u(t, 1, m)
tt(t) v(t, 1, 1) v(t, 1, 2) ... v(t, 1, m)
tt(t) u(t, 2, 1) u(t, 2, 2) ... u(t, 2, m)
tt(t) v(t, 2, 1) v(t, 2, 2) ... v(t, 2, m)
...
tt(t) u(t, z, 1) u(t, z, 2) ... u(t, z, m)
tt(t) v(t, z, 1) v(t, z, 2) ... v(t, z, m)

其中tt是以秒为单位的时间(由于时间系列的开始?),t是时间索引,m是边界元件的数量,z是西格玛层的数量,uv与平均流量U和V分量(大小[吨, Z,M])和ubarvbar是深度平均平均流量U和v分量(大小[T,M])。

casename_elj_obc.datmod_obcs2.F在第235行中指定的额外文件:

235        CALL FOPEN(111,TRIM(INPUT_DIR)//TRIM(CASENAME)//'_elj_obc.dat',"cfr")

它的格式casename_tide_el.dat与第一列非常相似,只是它省略了第一列中的时间戳:

casename_elj_obc.dat

elev(1, 1) elev(1, 2) ... elev(1, m)
elev(2, 1) elev(2, 2) ... elev(2, m)
...
elev(tt, 1) elev(tt, 2) ... elev(tt, m)

其中,tt是时间步数,m是边界节点的数量,elev是开放边界节点处的表面高程。

1 各类智能优化算法改进及应用 生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化 2 机器学习和深度学习方面 卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断 2.图像处理方面 图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知 3 路径规划方面 旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化 4 无人机应用方面 无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配 、无人机安全通信轨迹在线优化 5 无线传感器定位及布局方面 传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化 6 信号处理方面 信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化 7 电力系统方面 微电网优化、无功优化、配电网重构、储能配置 8 元胞自动机方面 交通流 人群疏散 病毒扩散 晶体生长 9 雷达方面 卡尔曼滤波跟踪、航迹关联、航迹融合
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值