01背包问题(一般写法)

本文介绍了如何使用动态规划方法(DP),通过闫式分析法解决背包问题,给定N件物品和容量为V的背包,计算在不超过背包容量的前提下,选择物品以获得最大总价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8

题解

解题思路:动态规划(DP)之闫式分析法

#include<iostream>
#include<algorithm>
using namespace std;
//题目所定义的物品最大数
const int N = 1010;
//输入的物品数n、背包容量m
int n,m;
//存储物品的体积、价值
int v[N],w[N];
//二维数组解
int f[N][N];

int main(){
    ios::sync_with_stdio(false);
    cin.tie(0),cout.tie(0);
    cin >> n >> m;
    for(int i = 1 ; i <= n ; i++){
        cin >> v[i] >> w[i];
    }
    
    //循环的是物品数,表示的是考虑前i个物品
    for(int i = 1 ; i <= n ; i++){
        //循环的是背包容量,表示的是考虑背包还有j个容量
        for(int j = 0; j <= m ; j++){
            //左半边子集,即不选取这个物品,保持上层结果
            f[i][j] = f[i-1][j];
            
            //背包剩余容量能够装下第i个物品
            if(j >= v[i]){
                //右半边子集,即当价值大于上层结果,更新集合
                f[i][j] = max(f[i][j],f[i-1][j-v[i]] + w[i]);
            }
            
        }
    }
    
    cout << f[n][m] <<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魏大橙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值