题目
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
题解
解题思路:动态规划(DP)之闫式分析法
#include<iostream>
#include<algorithm>
using namespace std;
//题目所定义的物品最大数
const int N = 1010;
//输入的物品数n、背包容量m
int n,m;
//存储物品的体积、价值
int v[N],w[N];
//二维数组解
int f[N][N];
int main(){
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
cin >> n >> m;
for(int i = 1 ; i <= n ; i++){
cin >> v[i] >> w[i];
}
//循环的是物品数,表示的是考虑前i个物品
for(int i = 1 ; i <= n ; i++){
//循环的是背包容量,表示的是考虑背包还有j个容量
for(int j = 0; j <= m ; j++){
//左半边子集,即不选取这个物品,保持上层结果
f[i][j] = f[i-1][j];
//背包剩余容量能够装下第i个物品
if(j >= v[i]){
//右半边子集,即当价值大于上层结果,更新集合
f[i][j] = max(f[i][j],f[i-1][j-v[i]] + w[i]);
}
}
}
cout << f[n][m] <<endl;
return 0;
}