BZOJ 3229 [Sdoi2008]石子合并 GarsiaWachs算法

Description

  在一个操场上摆放着一排 N 堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的 2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。
  试设计一个算法,计算出将 N 堆石子合并成一堆的最小得分。
 

Input

  第一行是一个数 N
  以下 N 行每行一个数 A ,表示石子数目。
 

Output

  共一个数,即N堆石子合并成一堆的最小得分。

 

Sample Input

4
1
1
1
1

Sample Output

8

HINT

对于 100% 的数据,1≤N≤40000

对于 100% 的数据,1≤A≤200

Source




原版的石子合并,N却有整整40000……

基本的DP是O(N^3)的,
平行四边形优化过后是O(N^2)的,但是仍然不能满足这题的条件。
这里要用到GarsiaWachs算法。

步骤:
1.找到第一个a[u-1]<=a[u+1]的位置;
2.将a[u-1]和a[u]合并(加起来);
3.把合并后的结果插入到位置v,使得a[v]>=a[u]。
如此重复上述步骤,合并n-1次,得到的就是最优结果……
其实我不太知道原理……
证明还是网上百度吧。。。

时间复杂度O(N^2)……这是最坏情况下的,,听说平均是O(N log N)
反正加上平衡树就是稳定O(N log N)了,,(我没加)


#include<bits/stdc++.h>
using namespace std;
int read(){
    int x=0,f=1;char ch=getchar();
    while (ch<'0' || ch>'9'){if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
const int 
	N=40005,
	MAX=9000000;
int n,a[N];
int main(){
	n=read();
	for (int i=1;i<=n;i++) a[i]=read();
	a[0]=a[n+1]=MAX;
	int m=n,ans=0;
	for (int i=1;i<n;i++){
		int k;
		for (int j=1;j<=m;j++)
			if (a[j-1]<=a[j+1]){
				k=j; break;
			}
		a[k-1]+=a[k];
        for (int j=k;j<m;j++) a[j]=a[j+1];
        ans+=a[--k];
        while (k && a[k-1]<=a[k])
			swap(a[k-1],a[k]),k--;
        a[m--]=MAX;
	}
	printf("%d\n",ans);
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值