Description
老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。
Input
第一行两个整数N和P(1≤P≤1000000000)。第二行含有N个非负整数,从左到右依次为a1,a2,…,aN, (0≤ai≤1000000000,1≤i≤N)。第三行有一个整数M,表示操作总数。从第四行开始每行描述一个操作,输入的操作有以下三种形式: 操作1:“1 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai×c (1≤t≤g≤N,0≤c≤1000000000)。 操作2:“2 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai+c (1≤t≤g≤N,0≤c≤1000000000)。 操作3:“3 t g”(不含双引号)。询问所有满足t≤i≤g的ai的和模P的值 (1≤t≤g≤N)。 同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。
Output
对每个操作3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。
Sample Input
7 43
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7
Sample Output
2
35
8
35
8
HINT
【样例说明】
初始时数列为(1,2,3,4,5,6,7)。
经过第1次操作后,数列为(1,10,15,20,25,6,7)。
对第2次操作,和为10+15+20=45,模43的结果是2。
经过第3次操作后,数列为(1,10,24,29,34,15,16}
对第4次操作,和为1+10+24=35,模43的结果是35。
对第5次操作,和为29+34+15+16=94,模43的结果是8。
测试数据规模如下表所示
数据编号 1 2 3 4 5 6 7 8 9 10
N= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000
M= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000
Source
比较恶心的线段树题目了……
就是打乘法和加法tag。
但是由于乘法的优先级是大于加法的,所以维护tag的时候可能会出现问题。
但是根据乘法分配律,我们有:
a*(b+c*d)=a*b+a*c*d
这是个很好的例子:一开始的加法tag是b,乘法的tag是c,原来是d,
然后乘a的时候,乘法tag就乘上a即可;
而加法tag要同乘以a,计算的时候还是相加即可简单维护了。
加上一个数的时候,只用更新加法tag即可。
悲催的我调了好久的代码……最后发现是在tag下放的时候,
表示区间的l,r和表示编号L,R打错了。。。
我的写法还加了好多强制转换等等防止爆int。
开始的时候数组开100000RE,20W也RE……
很神奇啊。。但是25W就A了。。
跑得贼慢。
其它……好像就没什么了。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll read(){
ll x=(ll)0,f=(ll)1;char ch=getchar();
while (ch<'0' || ch>'9'){if (ch=='-') f=(ll)-1;ch=getchar();}
while (ch>='0' && ch<='9'){x=x*(ll)10+ch-'0';ch=getchar();}
return x*f;
}
const int
N=250005;
ll n,moder,a[N];
struct Segment{
ll plus,multi,sum;
bool ifplus,ifmulti;
}tr[N<<2];
void up(int id){
int l=id<<1,r=id<<1|1;
tr[id].sum=(tr[l].sum+tr[r].sum)%moder;
}
void calcmulti(int x,ll tmp){
tr[x].multi=(tr[x].multi*tmp)%moder;
tr[x].sum=(tr[x].sum*tmp)%moder;
tr[x].plus=(tr[x].plus*tmp)%moder;
tr[x].ifmulti=1;
}
void calcplus(int x,ll tmp,int L,int R){
tr[x].plus=(tr[x].plus+tmp)%moder;
tr[x].sum=(tr[x].sum+(tmp*(ll)(R-L+1))%moder)%moder;
tr[x].ifplus=1;
}
void down(int id,int l,int r){
int L=id<<1,R=id<<1|1;
if (tr[id].ifmulti){
calcmulti(L,tr[id].multi);
calcmulti(R,tr[id].multi);
tr[id].multi=(ll)1;
tr[id].ifmulti=0;
}
if (tr[id].ifplus){
int mid=(l+r)>>1;
calcplus(L,tr[id].plus,l,mid);
calcplus(R,tr[id].plus,mid+1,r);
tr[id].plus=(ll)0;
tr[id].ifplus=0;
}
}
void build(int id,int l,int r){
tr[id].multi=(ll)1,tr[id].plus=(ll)0;
tr[id].ifmulti=tr[id].ifplus=0;
if (l==r){
tr[id].sum=a[l];
return;
}
int mid=(l+r)>>1;
build(id<<1,l,mid);
build(id<<1|1,mid+1,r);
up(id);
}
void update_plus(int id,int l,int r,int gl,int gr,ll num){
down(id,l,r);
if (l>=gl && r<=gr){
calcplus(id,num,l,r);
return;
}
int mid=(l+r)>>1;
if (gr<=mid) update_plus(id<<1,l,mid,gl,gr,num); else
if (gl>mid) update_plus(id<<1|1,mid+1,r,gl,gr,num);
else update_plus(id<<1,l,mid,gl,mid,num),
update_plus(id<<1|1,mid+1,r,mid+1,gr,num);
up(id);
}
void update_multi(int id,int l,int r,int gl,int gr,ll num){
down(id,l,r);
if (l>=gl && r<=gr){
calcmulti(id,num);
return;
}
int mid=(l+r)>>1;
if (gr<=mid) update_multi(id<<1,l,mid,gl,gr,num); else
if (gl>mid) update_multi(id<<1|1,mid+1,r,gl,gr,num);
else update_multi(id<<1,l,mid,gl,mid,num),
update_multi(id<<1|1,mid+1,r,mid+1,gr,num);
up(id);
}
ll query(int id,int l,int r,int gl,int gr){
down(id,l,r);
if (l>=gl && r<=gr) return tr[id].sum;
int mid=(l+r)>>1;
if (gr<=mid) return query(id<<1,l,mid,gl,gr)%moder; else
if (gl>mid) return query(id<<1|1,mid+1,r,gl,gr)%moder;
else return (query(id<<1,l,mid,gl,mid)
+query(id<<1|1,mid+1,r,mid+1,gr))%moder;
}
int main(){
n=read(),moder=read();
for (int i=1;i<=n;i++) a[i]=read();
build(1,1,n);
int Q=read(),opt,t,g;
while (Q--){
opt=read(),t=read(),g=read();
if (opt==3) printf("%lld\n",query(1,1,n,t,g));
else
if (opt==1) update_multi(1,1,n,t,g,read());
else update_plus(1,1,n,t,g,read());
}
return 0;
}