BZOJ 1717 [Usaco2006 Dec]Milk Patterns 产奶的模式 后缀数组

Description

农夫John发现他的奶牛产奶的质量一直在变动。经过细致的调查,他发现:虽然他不能预见明天产奶的质量,但连续的若干天的质量有很多重叠。我们称之为一个“模式”。 John的牛奶按质量可以被赋予一个0到1000000之间的数。并且John记录了N(1<=N<=20000)天的牛奶质量值。他想知道最长的出现了至少K(2<=K<=N)次的模式的长度。比如1 2 3 2 3 2 3 1 中 2 3 2 3出现了两次。当K=2时,这个长度为4。

Input

* Line 1: 两个整数 N,K。

* Lines 2..N+1: 每行一个整数表示当天的质量值。

Output

* Line 1: 一个整数:N天中最长的出现了至少K次的模式的长度

Sample Input

8 2
1
2
3
2
3
2
3
1

Sample Output

4

HINT



首先很容易可以想到二分答案,然后就转化为如何判定的问题。
连续重复的段的地方,能够看到它们后缀是连续的。

所以首先可以求出height,那么在判断mid是否可行的时候,
如果height[x..y]都>=mid,我们有:
LCP[p,q]是后缀suffix[p]和suffix[q]的LCP
那么LCP[sa[i],sa[j]]=min(height[i..j])
又因为刚才说过了连续重复的段在排名里也是连续的……
所以直接判断有没有一段连续的,而且长度至少为K的height,
使得它们都>=mid即可。
注意是连续的。

那这题数字范围很大,用计数排序是不行的……
当然可以用快排来,
但其实可以离散化后继续计数排序..


#include<bits/stdc++.h>
using namespace std;
int read(){
    int x=0,f=1;char ch=getchar();
    while (ch<'0' || ch>'9'){if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
const int 
	N=20005;
int n,K,m,s[N];
int cnta[N],cntb[N],a[N],b[N<<1],tsa[N];
int sa[N],rank[N],height[N];
struct Read{
	int x,id;
}aa[N];
bool cmp(Read q,Read w){
	return q.x<w.x;
}
void Get_SA(){
	for (int i=0;i<=m;i++) cnta[i]=0;
	for (int i=1;i<=n;i++) cnta[s[i]]++;
	for (int i=1;i<=m;i++) cnta[i]+=cnta[i-1];
	for (int i=n;i;i--)
		sa[cnta[s[i]]--]=i;
	rank[sa[1]]=1;
	for (int i=2;i<=n;i++)
		rank[sa[i]]=rank[sa[i-1]]+(s[sa[i]]!=s[sa[i-1]]);

	for (int j=1;rank[sa[n]]!=n;j<<=1){
		for (int i=1;i<=n;i++) a[i]=rank[i],b[i]=rank[i+j];
		for (int i=0;i<=n;i++) cnta[i]=cntb[i]=0;
		for (int i=1;i<=n;i++) cnta[a[i]]++,cntb[b[i]]++;
		for (int i=1;i<=n;i++) cnta[i]+=cnta[i-1],cntb[i]+=cntb[i-1];
		for (int i=n;i;i--) tsa[cntb[b[i]]--]=i;
		for (int i=n;i;i--) sa[cnta[a[tsa[i]]]--]=tsa[i];	
		rank[sa[1]]=1;
		for (int i=2;i<=n;i++)
			rank[sa[i]]=rank[sa[i-1]]+(a[sa[i]]!=a[sa[i-1]] || b[sa[i]]!=b[sa[i-1]]);
	}
}
void Get_H(){
	int len=0;
	for (int i=1;i<=n;i++){
		if (len) len--;
		while (s[i+len]==s[sa[rank[i]-1]+len]) len++;
		height[rank[i]]=len;
	}
}
bool ok(int x){
	int tmp=1;
	for (int i=2;i<=n;i++){
		if (height[i]>=x) tmp++; else tmp=1;
		if (tmp>=K) return 1;
	}
	return 0;
}
void disc(){
	sort(aa+1,aa+1+n,cmp);
	m=0;
	for (int i=1;i<=n;i++)
		if (aa[i].x!=aa[i-1].x) s[aa[i].id]=++m;
			else s[aa[i].id]=m;
}
int main(){
	n=read(),K=read();
	for (int i=1;i<=n;i++)
		aa[i].x=read(),aa[i].id=i;
	disc();
	
	Get_SA(),Get_H();
	
	int L=0,R=n;
	while (L<R){
		int mid=(L+R+1)>>1;
		if (ok(mid)) L=mid;
			else R=mid-1;
	}
	printf("%d\n",L);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值