BZOJ 1003 [ZJOI2006]物流运输 SPFA+动态规划

Description

  物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转
停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种
因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是
修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本
尽可能地小。

Input

  第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示
每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编
号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来
一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1< = a < = b < = n)。表示编号为P的码
头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一
条从码头A到码头B的运输路线。

Output

  包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

Sample Input

5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5

Sample Output

32
//前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32

HINT






挺不错的题。
首先肯定会有一个贪心的想法,假如不考虑更换道路产生的K元钱,
那么每天直接找合法最短路即可。
但是每次产生K元钱的话会怎么样?也就是把n天分成了很多段,
第一段走第一条路线,第二段走另一条……
每一段走的路线满足可走,而且,肯定是可走的里面最短的。
所以可以预处理cost[x][y],指x~y天走同一条路线的最小花费。
那么只要去除所有x~y天不能走的点之后跑最短路,就可以得到这个花费。
范围那么小直接暴力预处理……

预处理之后,就是一个很简单的dp了……
dp[x]表示到第x天的最小值。
考虑y~x是一段,那么dp[x]=min{dp[y]+cost[y+1,x]+K}

1A很兴奋=v =



#include<bits/stdc++.h>
using namespace std;
const int 
	DAY=105,
	N=25;
int n,m,day,K,Ecnt;
int dis[N],dp[DAY];
int cost[DAY][DAY];
bool vis[N],tflag[N][DAY],flag[N];
queue<int>Q;
struct Edge{
	int next,to,val;
}E[N*N<<1];int head[N];
void add(int u,int v,int w){
	E[++Ecnt].next=head[u];
	E[Ecnt].to=v;
	E[Ecnt].val=w;
	head[u]=Ecnt;
}
int SPFA(){
	memset(dis,100,sizeof(dis));
	int inf=dis[0];
	Q.push(1),dis[1]=0;
	while (!Q.empty()){
		int u=Q.front();Q.pop();
		vis[u]=0;
		for (int i=head[u];i;i=E[i].next)
			if (!flag[E[i].to] && dis[E[i].to]>dis[u]+E[i].val){
				dis[E[i].to]=dis[u]+E[i].val;
				if (!vis[E[i].to]) vis[E[i].to]=1,Q.push(E[i].to);
			}
	}
	if (dis[n]==inf) return -1;
	return dis[n];
}
void Pre(){
	for (int i=1;i<=day;i++)
		for (int j=i;j<=day;j++){
			for (int p=1;p<=n;p++){
				flag[p]=0;
				for (int k=i;k<=j;k++)
					flag[p]|=tflag[p][k];
			}
			cost[i][j]=SPFA()*(j-i+1);
		}
}
void DP(){
	memset(dp,100,sizeof(dp));
	dp[0]=0;
	for (int i=1;i<=day;i++)
		for (int j=0;j<i;j++)
			if (cost[j+1][i]>=0) dp[i]=min(dp[i],dp[j]+cost[j+1][i]+K);
}
int main(){
	scanf("%d%d%d%d",&day,&n,&K,&m);
	int x,y,z,d,P;
	for (int i=1;i<=m;i++){
		scanf("%d%d%d",&x,&y,&z);
		add(x,y,z),add(y,x,z);
	}
	scanf("%d",&d);
	for (int i=1;i<=d;i++){
		scanf("%d%d%d",&P,&x,&y);
		for (int j=x;j<=y;j++) tflag[P][j]=1;
	}

	Pre(),DP();
	printf("%d\n",dp[day]-K);
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值