Description
Input
第一行包含两个整数N、M。N表示路口的个数,M表示道路条数。接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号。接下来N行,每行一个整数,按顺序表示每个路口处的ATM机中的钱数。接下来一行包含两个整数S、P,S表示市中心的编号,也就是出发的路口。P表示酒吧数目。接下来的一行中有P个整数,表示P个有酒吧的路口的编号
Output
输出一个整数,表示Banditji从市中心开始到某个酒吧结束所能抢劫的最多的现金总数。
Sample Input
6 7
1 2
2 3
3 5
2 4
4 1
2 6
6 5
10
12
8
16
1 5
1 4
4
3
5
6
Sample Output
47
HINT
50%的输入保证N, M<=3000。所有的输入保证N, M<=500000。每个ATM机中可取的钱数为一个非负整数且不超过4000。输入数据保证你可以从市中心沿着Siruseri的单向的道路到达其中的至少一个酒吧。
传送门
因为一个点可以走多次,那很明显一个强连通分量里面所有点值都可以有。
那么就很明显了,只要tarjan缩点之后跑个最长路,
或者拓扑+dp
最后在包含个酒吧的强连通分量里枚举一下最大值即可。
#include<bits/stdc++.h>
using namespace std;
const int
N=500005;
int n,m,sccnum,S,Ecnt,Time,top,Start;
int x[N],y[N];
int DFN[N],LOW[N],stk[N],scc[N];
int w[N],sum[N],dis[N];
bool vis[N],flag[N],mark[N],instack[N];
struct Edge{
int next,to;
}E[N];int head[N];
void add(int u,int v){
E[++Ecnt].next=head[u];
E[Ecnt].to=v;
head[u]=Ecnt;
}
void tarjan(int u){
DFN[u]=LOW[u]=++Time;
instack[u]=1,stk[++top]=u;
for (int i=head[u];i;i=E[i].next){
int v=E[i].to;
if (!DFN[v]){
tarjan(v);
LOW[u]=min(LOW[u],LOW[v]);
} else
if (instack[v]) LOW[u]=min(LOW[u],DFN[v]);
}
if (LOW[u]==DFN[u]){
sum[++sccnum]=0,mark[sccnum]=0;
while (stk[top]!=u){
if (stk[top]==S) Start=sccnum;
scc[stk[top]]=sccnum,mark[sccnum]|=flag[stk[top]];
instack[stk[top]]=0,sum[sccnum]+=w[stk[top--]];
}
instack[u]=0,sum[sccnum]+=w[u],top--;
scc[u]=sccnum,mark[sccnum]|=flag[u];
if (u==S) Start=sccnum;
}
}
void rebuild(){
memset(head,0,sizeof(head));
Ecnt=0;
for (int i=1;i<=m;i++)
if (scc[x[i]]!=scc[y[i]]) add(scc[x[i]],scc[y[i]]);
}
void SPFA(int S){
queue<int>Q;
while (!Q.empty()) Q.pop();
int inf=dis[0];
Q.push(S),dis[S]=sum[S];
while (!Q.empty()){
int u=Q.front();Q.pop();
vis[u]=0;
for (int i=head[u];i;i=E[i].next){
int v=E[i].to;
if (dis[v]<dis[u]+sum[v]){
dis[v]=dis[u]+sum[v];
if (!vis[v]) vis[v]=1,Q.push(v);
}
}
}
}
int main(){
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++)
scanf("%d%d",&x[i],&y[i]),add(x[i],y[i]);
for (int i=1;i<=n;i++) scanf("%d",&w[i]);
int x,P;scanf("%d%d",&S,&P);
for (int i=1;i<=P;i++)
scanf("%d",&x),flag[x]=1;
sccnum=Time=top=0;
for (int i=1;i<=n;i++)
if (!DFN[i]) tarjan(i);
rebuild();
SPFA(Start);
int ans=0;
for (int i=1;i<=sccnum;i++)
if (mark[i]) ans=max(ans,dis[i]);
printf("%d\n",ans);
return 0;
}