bzoj 1179 [Apio2009]Atm tarjan+最长路

Description

Input

第一行包含两个整数N、M。N表示路口的个数,M表示道路条数。接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号。接下来N行,每行一个整数,按顺序表示每个路口处的ATM机中的钱数。接下来一行包含两个整数S、P,S表示市中心的编号,也就是出发的路口。P表示酒吧数目。接下来的一行中有P个整数,表示P个有酒吧的路口的编号

Output

输出一个整数,表示Banditji从市中心开始到某个酒吧结束所能抢劫的最多的现金总数。

Sample Input

6 7

1 2

2 3

3 5

2 4

4 1

2 6

6 5

10

12

8

16

1 5

1 4

4

3

5

6
Sample Output

47
HINT

50%的输入保证N, M<=3000。所有的输入保证N, M<=500000。每个ATM机中可取的钱数为一个非负整数且不超过4000。输入数据保证你可以从市中心沿着Siruseri的单向的道路到达其中的至少一个酒吧。


传送门
因为一个点可以走多次,那很明显一个强连通分量里面所有点值都可以有。
那么就很明显了,只要tarjan缩点之后跑个最长路,
或者拓扑+dp
最后在包含个酒吧的强连通分量里枚举一下最大值即可。

#include<bits/stdc++.h>
using namespace std;
const int 
    N=500005;
int n,m,sccnum,S,Ecnt,Time,top,Start;
int x[N],y[N];
int DFN[N],LOW[N],stk[N],scc[N];
int w[N],sum[N],dis[N];
bool vis[N],flag[N],mark[N],instack[N];
struct Edge{
    int next,to;
}E[N];int head[N];
void add(int u,int v){
    E[++Ecnt].next=head[u];
    E[Ecnt].to=v;
    head[u]=Ecnt;
}
void tarjan(int u){
    DFN[u]=LOW[u]=++Time;
    instack[u]=1,stk[++top]=u;
    for (int i=head[u];i;i=E[i].next){
        int v=E[i].to;
        if (!DFN[v]){
            tarjan(v);
            LOW[u]=min(LOW[u],LOW[v]);
        } else
        if (instack[v]) LOW[u]=min(LOW[u],DFN[v]);
    }
    if (LOW[u]==DFN[u]){
        sum[++sccnum]=0,mark[sccnum]=0;
        while (stk[top]!=u){
            if (stk[top]==S) Start=sccnum;
            scc[stk[top]]=sccnum,mark[sccnum]|=flag[stk[top]];
            instack[stk[top]]=0,sum[sccnum]+=w[stk[top--]];
        }
        instack[u]=0,sum[sccnum]+=w[u],top--;
        scc[u]=sccnum,mark[sccnum]|=flag[u];
        if (u==S) Start=sccnum;
    }
}
void rebuild(){
    memset(head,0,sizeof(head));
    Ecnt=0;
    for (int i=1;i<=m;i++)
        if (scc[x[i]]!=scc[y[i]]) add(scc[x[i]],scc[y[i]]);
}
void SPFA(int S){
    queue<int>Q;
    while (!Q.empty()) Q.pop();
    int inf=dis[0];
    Q.push(S),dis[S]=sum[S];
    while (!Q.empty()){
        int u=Q.front();Q.pop();
        vis[u]=0;
        for (int i=head[u];i;i=E[i].next){
            int v=E[i].to;
            if (dis[v]<dis[u]+sum[v]){
                dis[v]=dis[u]+sum[v];
                if (!vis[v]) vis[v]=1,Q.push(v);
            }
        }
    }
}
int main(){
    scanf("%d%d",&n,&m);
    for (int i=1;i<=m;i++)
        scanf("%d%d",&x[i],&y[i]),add(x[i],y[i]);
    for (int i=1;i<=n;i++) scanf("%d",&w[i]);
    int x,P;scanf("%d%d",&S,&P);
    for (int i=1;i<=P;i++)
        scanf("%d",&x),flag[x]=1;
    sccnum=Time=top=0;
    for (int i=1;i<=n;i++)
        if (!DFN[i]) tarjan(i);
    rebuild();
    SPFA(Start);
    int ans=0;
    for (int i=1;i<=sccnum;i++)
        if (mark[i]) ans=max(ans,dis[i]);
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值