奇异值分解(SVD)

一、首先,奇异值分解与普通的矩阵分解的区别:

普通矩阵分解要求矩阵是一个方阵,行列数目相等,对于实际应用中出现的非方阵、非对称的矩阵进行分解,引入了奇异值分解

(Singular Value Decomposition)。

普通矩阵的分解,就是线性代数中求解特征值和特征向量的过程。

其中U的列向量是特征向量,Λ 是对角矩阵,Λ 对角元素是对应特征向量的特征值。

 

二、奇异值分解SVD

假设矩阵 A 的维度为 mxn,虽然 A 不是方阵,但是下面的矩阵却是方阵,且维度分别为 mxm、nxn。

因此,我们就可以分别对上面的方阵进行分解:

其中,Λ1 和 Λ2 是对角矩阵,且对角线上非零元素均相同,即两个方阵具有相同的非零特征值,特征值令为 σ1, σ2, … , σk。

值得注意的是,k<=m 且 k<=n。

根据 σ1, σ2, … , σk 就可以得到矩阵 A 的特征值为:

接下来,我们就能够得到奇异值分解的公式:

其中,P 称为左奇异矩阵,维度是 mxm,Q 称为右奇异矩阵,维度是 nxn。Λ 并不是方阵,其维度为 mxn,Λ 对角线上的非零元

素就是 A 的特征值 λ1, λ2, … , λk。图形化表示奇异值分解如下图所示:

举个简单的例子来说明,令 A 为 3×2 的矩阵:

则有:

计算得到特征向量 P 和对应的特征值 σ 为:

然后,有:

计算得到特征向量 Q 和对应的特征值 σ 为:

则我们看可以得到 A 的特征值为:

最后,整合矩阵相乘结果,满足奇异值分解公式。

奇异值分解可以写成以下和的形式:

其中,p1 和 q1 分别为左奇异矩阵和右奇异矩阵的特征向量。

------------------------------------------------------------------------------------------------------

原文:http://redstonewill.com/1529/

附:如何通俗地理解奇异值分解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值