python
Pyhon学习记录
ThorKing01
这个作者很懒,什么都没留下…
展开
-
Python中的split()和splitext()
Python脚本中文件读取处理的时候常用的函数,写下来巩固一下。import os #os.path.splitext()将文件名和扩展名分开fname,fename=os.path.splitext('/home/thorking/plate/2019060825468_car_1_plate.jpg')print ('fname is:',fname)print ('fena...原创 2019-10-24 19:42:48 · 1805 阅读 · 0 评论 -
python3+opencv读取和保存名字中含有中文的图片
错误示范import osimport cv2org_p=r'F:/pycharm/charSamples/test/'class_path = org_p + '浙' + '/'for img_name in os.listdir(class_path): imgpath = class_path + img_name print(imgpath) im...原创 2019-04-02 20:30:29 · 2973 阅读 · 0 评论 -
Tensorflow可视化与Tensorboard可视化失败解决
可视化方法与遇见的问题1.Windows直接打开cmd 转入相应盘符 再直接输入图中命令。打开对应网址即可。2.Ubuntu遇见可以正常打开网页,但是出现没有数据可视化的问题。首先激活环境,输入命令,发现可以正常打开网页,但是没有数据。最后与之前命令行对比发现在home前少了一个/,加上之后恢复。相关理论只要加入这两句话就可以显示Tens...原创 2019-06-04 09:57:49 · 826 阅读 · 0 评论 -
pip._vendor.requests.packages.urllib3.exceptions.ReadTimeoutError
完整问题:pip._vendor.requests.packages.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='pypi.tuna.tsinghua.edu.cn', port=443): Read timed out.Ubuntu中pip一直报错,更新延迟,解决方法:加长超时时间的限定在命令...原创 2019-06-11 14:12:12 · 6555 阅读 · 0 评论 -
Python中的X[...,0]、X[...,1]、X[:,0]、X[:,1]、X[:,:,0]、X[:,:,1]、X[:,m:n]、X[:,:,m:n]、X[:-1]和X[::-1]
其实这些总的来说都是属于Numpy的数组切片的索引的方法。理解了三维数组对于其它的类型也就迎刃而解!以三维数组的原始类型为例[第一维起点:终点:步长,第二维起点:终点:步长,第三维起点:终点:步长]其中切片后的内容包括起点,不包括终点。定义数组A=np.array([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]],[[13,14,15],[16,...原创 2019-07-09 15:28:52 · 2295 阅读 · 1 评论 -
Numpy使用记录
np.where(condition,x,y)若x,y是值,那么就是condition正确,数组的值变为x若不正确则数值变为ynp.where(condition) 返回满足条件的值的x,y值。np.amin(shuzu,0/1)一维数组找最小值,二维数组需要指定行或列,1是找行最小的,0是找列最小的。np.amax()与np.amin相反找的是最大的值np.concatenate...原创 2019-10-24 14:59:02 · 313 阅读 · 0 评论 -
ValueError: operands could not be broadcast together with shapes (9,8) (8,9)
在进行矩阵计算的时候遇到的错误,为了方便理解,以3*2和2*3的矩阵为例。ValueError: operands could not be broadcast together with shapes (3,2) (2,3)import numpy as npa=np.array([[1,2],[3,4],[5,6]])b=np.array([[1,1,1],[2,2,2]])p...原创 2019-08-01 18:00:54 · 51458 阅读 · 2 评论 -
Python与C++中SVD(奇异值分解)得到的右奇异值不同
目录一、现象与问题二、解决办法1.C++与Python中SVD的结果不同问题。2.特征值求解右奇异值(eig)与直接求解右奇异值(svd)结果不同i.发现有几列元素互为相反数ii.最后两列的位置互换iii.最好直接使用奇异值分解,而不是使用分步计算。其中会有很多误差。一、现象与问题在Python中,使用的是np.linalg.svd()来得到左右奇异值和特征值...原创 2019-07-27 14:40:30 · 2600 阅读 · 0 评论