八皇后问题(回溯问题)

八皇后问题的回溯算法解析
八皇后问题是一个经典的棋盘放置问题,要求在8×8棋盘上放置8个皇后,使得任意两个皇后不位于同一行、列或对角线上。本文介绍了使用递归方法解决此问题的思路,重点在于控制递归函数的返回条件,即皇后放置完成的成功条件和无可用放置位置的失败条件。通过回溯策略,逐行放置皇后并检查冲突,以找到所有可能的解决方案。

八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为n×n,而皇后个数也变成n。当且仅当 n = 1 或 n ≥ 4 时问题有解。
在这里插入图片描述
分析:
其实该问题并不难,利用递归方法很容易解决。没放置一个皇后,就将其能够攻击的区域进行标记,然后放置下一个皇后,一次类推……;此外,如果有解最终肯定是每一行有且只有一位皇后,所以放置的时候按照逐行放置的顺序进行。此问题难点在于如何把控递归函数的返回条件,一种条件是8个皇后放置完成后,返回成功,一种条件是该行中已经没有可以放置的位置,此时返回失败,需要重新放置。此时要额外注意,所谓的“重新放置”指的并不是将所有皇后清除重新来过,而是只返回上一层,将上一个导致本次放置失败的皇后进行清除,然后重新更新其位置,通过逐级放置、或逐级回溯可以达到遍历所有情况找到所有解

class Demo{
   
   
	int count=0;//全局计数变量
	int QUEEN_NUM=8;
	int label[QUEEN_NUM][QUEEN_NUM]={
   
   {
   
   0,0,0,0,0,0,0,0},{
   
   0,0,0,0,0,0,0,0},{
   
   0,0,0,0,0,0,0,0},{
   
   0,0,0,0,0,0,0,0},{
   
   0,0,0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值