01背包问题总结

01背包问题

一、本案例的变量

1.w(i) 第i个物品的重量

2.v(i) 第i个物品的价值

3.dp[i] [j] 容量为j的背包在装前i个物品时的最大价值

4.n表示背包的容重量,m表示物品的数量

二、表格
j=0j=1j=2j=3j=4j=5j=6j=7j=8j=9j=10j=11
i=0000000000000
i=1 w=2 v=3003333333333
i=2 w=3 v=4003447777777
i=3 w=4 v=5003457899121212
i=4 w=5 v=60034578910121314

tip:黄颜色的数字有规律,后续可以优化代码

三、算法思路

当j=0 或者 i=0的时候

产生的价值都为0(不管它,不赋值的int数组元素默认值为0)

当j < w[i]时

dp[i] [j] = dp[i-1] [j]

当j >= w[j]时

我们将 拿i号物品的情况不拿i号物品相比较

拿i号物品的情况:v[i] + dp[i-1] [j - w[i]]

不拿i号物品的情况: dp[i-1] [j]

然后选大的

四、代码实现
#include <iostream>
#include <algorithm>
using namespace std;
int dp[32][32];
int w[32],v[32];

int main(){
    //n代表物品的数量,m背包的容量
    int n,m; 
    //用户输入物品的数量n 和 背包的容量m
    cin>>n>>m;
    //给i等于1到n号的重量和价值赋值输入
    for(int i = 1;i <= n;i++){
        cin>>w[i]>>v[i];
    }
    //选取dp的最优价值组合
    for(int i = 1;i <= n;i++){
        for(int j = 1;j <= m;j++){
            if(j < w[i])
                dp[i][j] = dp[i-1][j];
            else
                dp[i][j] = max(dp[i-1][j],v[i] + dp[i-1][j-w[i]]);
        }
    }
    //输出最优组合价值表
    for(int i = 0;i <= n;i++){
        for(int j = 0;j <= m;j++){
            cout<<" "<<dp[i][j];
        }
        cout<<endl;
    }
}
五、结果展示

六、持续优化与问题

1.改为单行数组

为什么要倒序

2.最优解回溯

3.可以不从1开始寻得最优解,具体看那篇csdn博客

七、持续优化问题3 最优解的获取‘

item[] 存储最优解的选择

item[0]为0,因为当i=0时,选择与不选择一样,没有任何价值,而实际上也没有价值为0的物品,结构所需而已

思路

当dp[i] [j] 与 dp[i-1] [j]价值相同时,说明没选当前物品,item[i] = 0,并转入考虑dp[i-1] [j]

当dp[i] [j] 满足j >= w[i] 且 dp[i-1] [j - w[i]] + v[i]时,说明选择了当前物品,item[i] = 1,并转入考虑dp[i-1] [j -w[i]]

上面两种方式递归至不再满足i>0为止

实现代码如下
#include <algorithm>
using namespace std;
int dp[32][32];
int w[32],v[32];
int item[32]; 

void findBest(int i,int j){   //回溯最优解
	if(i > 0){
		if(dp[i][j] == dp[i-1][j]){
			item[i] = 0;
			findBest(i-1,j);
		}
		else if(j - w[i] >= 0 && dp[i][j] == dp[i-1][j - w[i]] + v[i]){
			item[i] = 1;
			findBest(i-1,j-w[i]);
		}
	}
} 
   

int main(){
    //n代表物品的数量,m背包的容量
    int n,m; 
    //用户输入物品的数量n 和 背包的容量m
    cin>>n>>m;
    //给i等于1到n号的重量和价值赋值输入
    for(int i = 1;i <= n;i++){
        cin>>w[i]>>v[i];
    }
    //选取dp的最优价值组合
    for(int i = 1;i <= n;i++){
        for(int j = 1;j <= m;j++){
            if(j < w[i])
                dp[i][j] = dp[i-1][j];
            else
                dp[i][j] = max(dp[i-1][j],v[i] + dp[i-1][j-w[i]]);
        }
    }
    //输出最优组合价值表
    for(int i = 0;i <= n;i++){
        for(int j = 0;j <= m;j++){
            cout<<" "<<dp[i][j];
        }
        cout<<endl;
    }
    int t,k;
	cin>>t>>k; 
    findBest(t,k);
    item[0] = 0;
    for(int i = 0;i <= n;i++){
    	cout<<item[i]<<' ';
    }
    return 0;
}

运行结果如下

运行结果

ndBest(t,k);
item[0] = 0;
for(int i = 0;i <= n;i++){
cout<<item[i]<<’ ';
}
return 0;
}




运行结果如下

[外链图片转存中...(img-m95sOzDO-1680331764993)]





 













  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
01背包问题动态规划中的一个经典问题,它的解法也非常经典,下面是我对该问题的动态规划总结。 1. 状态定义 定义一个二维数组dp[i][j],其中i表示当前考虑到第i个物品,j表示当前背包容量为j,dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。 2. 状态转移方程 对于每个物品,我们可以选择将其放入背包,也可以选择不放入背包,因此状态转移方程如下: 如果不将第i个物品放入背包,则 dp[i][j] = dp[i - 1][j] 即前i-1个物品已经在容量为j的背包中的最大价值就是dp[i - 1][j]。 如果将第i个物品放入背包,则 dp[i][j] = dp[i-1][j-w[i]] + v[i] 即前i-1个物品在容量为j-w[i]的背包中的最大价值加上第i个物品的价值v[i]。 最终的状态转移方程为: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]) 3. 边界条件 当物品数量为0时,dp[0][j]都等于0;当背包容量为0时,dp[i][0]都等于0。 4. 求解最优解 最终的最大价值为dp[n][W],其中n表示物品数量,W表示背包容量。 5. 代码实现 以下是01背包问题动态规划代码实现,其中w和v分别表示物品的重量和价值,n和W表示物品数量和背包容量: ```python def knapsack(w, v, n, W): dp = [[0] * (W+1) for _ in range(n+1)] for i in range(1, n+1): for j in range(1, W+1): if j < w[i-1]: dp[i][j] = dp[i-1][j] else: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]] + v[i-1]) return dp[n][W] ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值