导读
随着人工智能技术的蓬勃发展,AI Agent 不再只是科技巨头的专属。如今,每个人都可以成为 AI 的创造者和使用者。
Dify,一个开源的 LLM 应用开发平台,以其简洁的界面和强大的功能,让模型管理、RAG 搭建和 Agent 开发变得简单直观,而 TiDB Vector 的向量搜索功能可以为 AI Agent 提供灵活的数据处理能力。
本文将介绍如何通过 Dify 和 TiDB Vector 这两个工具,快速搭建起一个功能完备的 AI Agent。
*本文外链较多,可结合文末“参考资料”辅助阅读。
关于 Dify:Dify 是一个易用的 LLMOps 平台,旨在让更多人可以创建可持续运营的原生 AI
应用,提供多种类型应用的可视化编排,应用可开箱即用,也能以后端即服务的 API 提供服务。
目前 TiDB Vector 的功能已经推出,开源了 tidb-vector-python [1],并在两个 AI Agent 引擎中支持了它,具体可以看 LangChain [2]和 LlamaIndex [3]的文档。
但其实这两个开源框架对于非开发者还是略有难度和学习成本,本文介绍了通过 Dify 快速使用 TiDB Vector 搭建 AI Agent。
创建 TiDB Vector
目前如果想使用 TiDB Vector 功能暂时还需要申请,预计会很快公测。申请地址是 https://tidb.cloud/ai [4]
申请通过后会收到体验邀请的邮件,收到邮件后就可以登录 TiDB Cloud 来体验了。
首先让我们创建一个 TiDB Vector 实例: 登录 TiDB Cloud 并创建 cluster
选择 Serverless并设置 Region 为 Frankfurt (eu-central-1)
开启 Vector Search 并设置集群名
创建集群
创建好集群后还需要创建一个 shema,执行如下语句
create schema dify;
至此,我们已经可以拿到对应数据库的连接配置,请保存下来