基于 AutoFlow 快速搭建基于 TiDB 向量搜索的本地知识库问答机器人

导读

本文将详细介绍如何通过 PingCAP 开源项目 AutoFlow 实现快速搭建基于 TiDB 的本地知识库问答机器人。如果提前准备好 Docker、TiDB 环境,整个搭建过程估计在 10 分钟左右即可完成,无须开发任何代码。
文中使用一篇 TiDB 文档作为本地数据源作为示例,在实际情况中,您可以基于自己的企业环境用同样的方法快速构造企业内部知识库问答机器人。

背景知识

AutoFlow 是 PingCAP 开源的一个基于 Graph RAG、使用 TiDB 向量存储和 LlamaIndex 构建的对话式知识库聊天助手。https://tidb.ai 也是 PingCAP 基于 AutoFlow 实现的一个 TiDB AI 智能问答系统,我们可以向 tidb.ai 咨询任何有关 TiDB 的问题,比如 “TiDB 对比 MySQL 有什么优势?”

TiDB 对比 MySQL 有什么优势

以下是 tidb.ai 的回答,从结果来说,tidb.ai 非常准确的理解了用户的问题并给出了相应的回答。它首先给出 TiDB 优势及 MySQL 限制的详细说明,然后给出一个结论性的总结,最后给出更多的参考链接。

tidb.ai 的回答

基于 TiDB 实现问答系统的基本流程

相信通过前面的一些介绍,大家对 tidb.ai 的能力已经有了一个清楚的认识。TiDB 的使用人员很幸运,因为有了 tidb.ai,几乎任何有关 TiDB 的问题都可以在这个统一的平台得到相应的解答,一方面节省了自己人工去查找 TiDB 官方文档或 AskTUG 论坛的时间,另一方面 tidb.ai 拥有比普通大模型更专业的 TiDB 知识问答。

在技术实现上,tidb.ai 背后主要使用到 TiDB 的 Graph RAG 技术、TiDB 向量检索功能以及 LLM 大模型的使用。实际上,在 AutoFlow 出来之前,我们也可以通过 python 编程开发的方式基于 LLM+RAG+TiDB 实现一套问答系统。主要的开发流程如下:

  1. 准备私域文本数据
  2. 对文本进行切分
  3. 通过 Embedding 将文本转为向量数据
  4. 把向量数据保存到 TiDB
  5. 获得用户输入问题并进行向量化,然后从 TiDB 中进行相似度搜索
  6. 将上述片段和历史问答作为上下文,与用户问题一起传入大模型,最后输出结果

开发流程

基于 AutoFlow 搭建本地知识库问答系统

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值