1、 用标准C编程:找出整形数字1-100之间的素数,并打印出来。(素数:除了1和自己本身可以被整除。)
2、 用标准C编程:有两个整形变量m、n,求出这两个数的最小公倍数。
3、 用标准C编程:输出杨辉三角形的前10行:三角形的每一行是(x+y)^n的展开式各项的系数。
例如:
第一行是(x+y)^0,其系数为1;
第二行是(x+y)^1,其系数为1;
第三行是(x+y)^2,其展开式为x2+2xy+y2,系数分别为1,2,1;
直观形式如下:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
解答:
1)对于一个问题,我们可以建立一个循环,看是否除到一个可以整除的数来退出循环,或者正常到程序结束。
#include <stdio.h>
int main(void){
int n;
int i;
int j;
scanf("%d",&n);
for(j=2;j<=n;j++){//看2到n有几个素数
for(i=2;i<=j && j%i;i++);//判断素数,如果有约数,退出循环
if(i==j)//正常退出,是素数
printf("%d\n",j);
}
}
2)对于第二个问题来说,我们可以先找到它的最大公约数,然后m*n/最大公约数来解决问题。
#include <stdio.h>
int main(void){
int m,n;
int yue;
int i,j;
scanf("%d%d",&m,&n);
for(i=2;(m%i || n%i) && i<=m;i++);//找到最大公约数
if(i=m+1)//判断最大公约数
printf("%d",(m*n)/1);
else
printf("%d",(m*n)/i);
}
3)对于第三个问题,我们可以使用二维数组找出它的规律,可以看出从第二行开始的的二个数等于它的上一个数,加它的上一个的左边的数。
所以我们可以有以下程序
#include <stdio.h>
int main(void)
{
int i,j,k,n;
scanf("%d",&n);
int a[n][n];
for(i=0;i<n;i++)
{
for(j=0;j<n;j++){
if(j==0 || i==j)
a[i][j]=1;
else
a[i][j]=a[i-1][j]+a[i-1][j-1];
}
}
for(i=0;i<n;i++)
{
for(k=0;k<n-i;k++){
printf("%2c",' ');
}
for(j=0;j<n;j++){
if(i>=j)
printf("%d ",a[i][j]);
}
printf("\n");
}
}
以上所有代码均在vs2010 或者 devc++中验证过,可行性。