HDU 4596 - Yet another end of the world(扩展欧几里得)


题意:给定一系列的虫洞,每个虫洞都有自己的x,y,z,当你的 id 对 x 取余后结果落在[ y,z ]区间内,则会被吸引,被两个或两个以上的虫洞吸引会有危险,求能否宇宙飞船能否起飞。


枚举每两个虫洞,有

id - k1 * x1 = u

id - k2 * x2 = v

其中k1与k2分别为 id / x1 与 id / x2,u与v分别为求余后的结果。

两式相减得  k2 * x2 - k1 * x1 = u - v

根据扩展欧几里得,判断 u - v 的取值是否能取到 gcd(x1, x2) 的整数倍即可

而 u 的范围为 [ y1, z1 ] ,v 的范围为 [ y2, z2 ],则 u - v 的范围为 [ y1 - z2,z1 - y2 ]。

假设范围为[ a,b ],gcd为 t 。

1、若a%t == 0 || b % t == 0,那么符合条件;

2、排除掉1的情况下,若a / t != b / t,那么也符合条件,因为若满足,则a与b中必定存在至少一个数能够对 t 取余为0。


#include<cstdio>
#include<cstring>
#include<cctype>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<list>
typedef long long ll;
typedef unsigned long long llu;
const int MAXN = 100 + 10;
const int MAXT = 1000 + 10;
const int INF = 0x7f7f7f7f;
const double pi = acos(-1.0);
const double EPS = 1e-6;
using namespace std;

ll gcd(ll m, ll n){
    if(n == 0)  return m;
    return gcd(n, m % n);
}

ll a, b, x[MAXT], y[MAXT], z[MAXT];
int n;

inline bool is_attract(ll t, ll u, ll v){
    if(u % t == 0 || v % t == 0)  return true;
    return u / t != v / t;
}

bool solve(){
    for(int i = 0; i < n; ++i)
        for(int j = i + 1; j < n; ++j){
            ll t = gcd(x[i], x[j]);
            if(is_attract(t, y[j] - z[i], z[j] - y[i]))  return false;
        }
    return true;
}

int main(){
    while(scanf("%d", &n) == 1){
        for(int i = 0; i < n; ++i)  scanf("%I64d%I64d%I64d", x + i, y + i, z + i);
        if(solve())  printf("Can Take off\n");
        else  printf("Cannot Take off\n");
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值