子空间投影

一、二维平面下的投影

\boldsymbol{a,b,p,e} 表示列向量。

\boldsymbol{p} 为 \boldsymbol{b} 向量在 \boldsymbol{a} 向量上的投影,\boldsymbol{​{e}={b}-{p}}

\boldsymbol{p} = x\boldsymbol{a} 

所以有: \boldsymbol{a^{T}(b-\emph{x}a)) = 0} , 变换后可得  \boldsymbol{\emph{x}a^{T}a=a^{T}b}  ==>  x = \boldsymbol{\boldsymbol{\frac{a^{T}b}{a^{T}a}}}

所以 \boldsymbol{p=\boldsymbol{a\boldsymbol{\frac{a^{T}b}{a^{T}a}}}}   , 则 记投影矩阵 为  \boldsymbol{P=\boldsymbol{\boldsymbol{\frac{aa^{T}}{a^{T}a}}}}, 所以   \boldsymbol{p=Pb}

\boldsymbol{P} 分母是一个数,分子为列向量乘以行向量,故分子为矩阵。所以\boldsymbol{P} 是个矩阵(投影矩阵)。

由于 \boldsymbol{Pb} 的结果在\boldsymbol{P}的列空间里,\boldsymbol{P} 的秩为1,其列空间是通过向量\boldsymbol{a}的直线。

矩阵\boldsymbol{P} 的性质:

(1)\boldsymbol{P^{T}=P}

(2)\boldsymbol{P^{2} = P} (表示两次投影结果不变)

 

二、三维平面的投影

1、应用背景

在求解 \boldsymbol{Ax=b} ( 式1)这个方程时,其可能无解,此时需要找到最优解。

因为 \boldsymbol{Ax}  总是在\boldsymbol{A} 的列空间中,若式(1)无解,则表示 \boldsymbol{b} 不在矩阵 \boldsymbol{A} 的列空间里面。此时我们希望能够找到在 \boldsymbol{A} 的列空间中,并且尽可能与 \boldsymbol{b} 接近的那个向量作为我们的解。

(\boldsymbol{b} 如果在\boldsymbol{A} 的 列空间里面, 那么投影为 \boldsymbol{b} 自己)

2、找到向量 \boldsymbol{b} 在 \boldsymbol{A} 的列空间的投影 \boldsymbol{p} 即为距离 \boldsymbol{b} 最近的并且在 \boldsymbol{A} 的列空间中的解,即

\boldsymbol{A{x}'=p} ,此时组合系数变为\boldsymbol{​{x}'}

 

如图:其中\boldsymbol{a1,a2} 表示 在\boldsymbol{A} 的列空间中的一组基(线性无关)

此时可以表示为    \boldsymbol{A=\begin{bmatrix} a1 & a2 \end{bmatrix}} 。

如图 : \boldsymbol{e = b-A{x}'} 。 其中,\boldsymbol{e} 为 误差向量。

所以有: \boldsymbol{​{a_1}^{T}(b-A{x}')) = 0} ,   \boldsymbol{​{a_2}^{T}(b-A{x}')) = 0} ,写成矩阵形式如下:

\boldsymbol{\begin{bmatrix} {a_1}^{T}\\ {a_2}^{T} \end{bmatrix}}\boldsymbol{(b-A{x}')} = \boldsymbol{\begin{bmatrix} 0 \\ 0 \end{bmatrix}}   == > \boldsymbol{A^{T}(b-A{x}')) = 0} (式2)

\boldsymbol{e = (b-A{x}')} 在 \boldsymbol{A^{T}} 的null space(零空间里) 即 e in N(\boldsymbol{A^{T}}),由四个基本空间的关系得知,\boldsymbol{e} 垂直与 \boldsymbol{A} 的列空间。

由式(2)得: \boldsymbol{A^{T}A{x}' = A^{T}b}

所以 \boldsymbol{ p = A(A^{T}A)^{-1}A^{T}b}

注意,   \boldsymbol{P = A(A^{T}A)^{-1}A} (式3)一般情况是不能拆解的,因为A 不一定是可逆矩阵。

事实上,如果\boldsymbol{A} 为nxn的可逆矩阵的时候上式3为 单位矩阵, 意味着 用单位阵对\boldsymbol{b}进行投影,因为单位阵是在\boldsymbol{R^{n}} 空间中,并非其子空间,这里我们要投影到\mathbf{A}的子空间,这显然是不可以的。

矩阵\boldsymbol{P} 的性质:

(1)\boldsymbol{P^{T}=P}

(2)\boldsymbol{P^{2} = P} (表示两次投影结果不变)

 

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值