MySQL基础
1.索引
1.1 索引数据结构
Hash表:不利于范围查询
二叉查找树:极端情况下(链表)查询复杂度O(n)
AVL树:自平衡二叉树,增删元素时,需要多次旋转,性能差。
红黑树:增删元素时,只需要O(1)次旋转。追求大致的平衡,导致树的高度较高,在内存中性能高。
B-树:所有节点存放key和data,每个节点独立。
B+树:只有叶子节点存放数据,相邻叶子节点有连接。
1.2 聚簇索引和非聚簇索引
区别:聚簇索引叶子节点保存数据的值,非聚簇索引叶子节点保存指向数据的指针。
1.3覆盖索引和联合索引
如果索引包含所有要查询字段的值,则叫覆盖索引。
使用多个字段创建的索引叫联合索引。
1.4慢SQL优化思路
SQL层面
警惕索引失效、使用具体字段代替*。
索引失效场景:
- 数据转换类:隐式转换、使用了函数、表关联字段编码/类型/长度不一致。
- 组合索引使用不当类:未命中最左匹配原则、出现>、<后序列停止最左匹配。
- 特殊关键字类:is null / is not null、or前后条件中,有一个列没索引,另一个也不会走索引、like如果以%开头,不走索引。
分析工具:Explain关键字
这一列表示关联类型或访问类型,即MySQL决定如何查找表中的行,查找数据行记录的大概范围。
依次从最优到最差分别为:system > const > eq_ref > ref > range > index > ALL
一般来说,得保证查询达到range级别,最好达到ref
索引层面:
- 尽可能建立联合索引,扩展已有索引代替新增索引。
- 字符串使用前缀索引代替普通索引。